• 제목/요약/키워드: Wood-biomass

검색결과 408건 처리시간 0.028초

주요 ASEAN 국가의 목질계 바이오에탄올의 활용 및 전망에 관한 연구 (Study on Utilization and Prospect of Lignocellulosic Bioethanol in ASEAN Countries)

  • 허수정;최준원
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권5호
    • /
    • pp.588-598
    • /
    • 2017
  • 현재 수송용 연료 첨가제로 유통되고 있는 바이오에탄올은 주로 옥수수와 사탕수수와 같은 식용(1세대) 바이오매스를 활용하여 생산된 것으로 농산물 가격상승 및 윤리적인 차원에서 다양한 문제점을 유발할 수 있다. 이를 해결하기 위해 비식용 자원인 목질계 바이오매스를 활용할 수 있는데, 그 예로 짚과 Bagasse (사탕수수 찌꺼기)와 같은 농업부산물과 목재가공 산업에서 발생하는 톱밥 등의 임업 부산물 등이 있다. 따라서 목질계 바이오에탄올 생산은 2세대 바이오매스의 효과적인 활용 경로가 될 수 있으며, 그 원료는 1세대 자원보다 풍부하며 저렴한 원료의 확보가 가능하다. 이러한 바이오연료를 사용함으로써 얻게 되는 가장 큰 장점으로는 화석연료와 달리 환경에 미치는 영향을 최소화하여 온실가스 감축에 기여하는 것을 들 수 있다. 본 연구에서는 목질계 바이오에탄올 활용을 통해 이루어질 수 있는 온실가스 감축효과와 ASEAN 국가(인도네시아, 말레이시아, 태국, 필리핀)에서 현재 시행되고 있는 재생에너지에 대한 정부 정책을 연구하였다. 이러한 네 국가에서는 바이오연료에 관한 많은 정책과 인센티브 등이 발전되어 왔으며, 이산화탄소 배출 감축 목표와 바이오연료 의무 혼합률을 점차 증가시킬 것으로 조사되었다.

Characteristics of Bio Pellets from Spent Coffee Grounds and Pinewood Charcoal Based on Composition and Grinding Method

  • Nopia CAHYANI;Andi Detti YUNIANTI;SUHASMAN;Kidung Tirtayasa Putra PANGESTU;Gustan PARI
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권1호
    • /
    • pp.23-37
    • /
    • 2023
  • One type of biomass that has promising potential for bio pellet production is spent coffee grounds (SCGs). However, previous studies have shown that SCGs in bio pellets cause a lot of smoke. Therefore, they need to be mixed with a material that has a higher calorific value to produce better quality pellets. One material that can be used is pine wood because it has a natural resin content that can increase the calorific value. The aim of this study was to examine the quality of bio pellets produced with SCGs and pine wood charcoal at different particle sizes. The charcoal was ground using either a hammer mill (HM) or a ball mill (BM). Pine wood charcoal was mixed with SCGs at ratios of SCGs to pine wood charcoal of 4:6 and 6:4 by weight, respectively, and the adhesive used a tapioca with a composition ratio 5% of the raw material. The bio pellets were produced using a manual pellet press. The quality of the bio pellets was assessed based on Indonesian National Standard (SNI) 8021-2014, and the physical observations include flame length, burning rate, and compressive strength. The average water content, ash content, and calorific value of the bio pellets were in accordance with SNI 8021-2014, but the density and ash content values were below the standard values. The BM variation of bio pellets had a higher compressive strength than the HM variation, and the 4:6 BM variation had the longest burning time compared with 4:6 HM.

목질바이오매스의 효소 당화 기술에 관한 연구 동향 (A Research Trend of Enzymatic Hydrolysis of Lignocellulosic Biomass : A Literature Review)

  • 김영숙
    • Journal of Forest and Environmental Science
    • /
    • 제26권2호
    • /
    • pp.137-148
    • /
    • 2010
  • The high costs for ethanol production with lignocellulosic biomass as a second generation energy materials currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into sugar that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of the enhancement of enzymatic hydrolysis for lignocellulosic biomass after pretreatment in bioethanol production process.

목질바이오매스의 급속열분해에 의해 생성된 바이오오일의 특성 분석 (Characterization of Bio-oils Produced by Fluidized Bed Type Fast Pyrolysis of Woody Biomass)

  • 최준원;최돈하;조태수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권6호
    • /
    • pp.36-43
    • /
    • 2006
  • 유동형 급속열분해기 (fluidized bed type fast pyrolyzer, 용량 400 g/h)를 이용하여 너도밤나무와 침엽수 혼합재(독일가문비나무/전나무, 50:50) 에서 바이오오일을 생산하였다. 목질바이오매스의 열분해는 약 $470{\pm}5^{\circ}C$에서 1~2초 동안 진행되었다. 목질바이오매스의 열분해 생성물의 조성은 너도밤나무의 경우 바이오오일 60%, 탄 9% 그리고 가스가 31% 정도 생산되었으며, 침엽수 혼합재는 바이오일 49%, 탄 9%, 그리고 42% 가량의 가스가 생성되었다. 두 종류의 목질바이오매스에서 생산된 바이오오일의 수분함량은 약 17~22%이었으며, 밀도는 수종에 관계없이 $1.2kg/{\ell}$이었다. 바이오오일의 원소 조성은 탄소 45%, 산소 47%, 수소 7%, 그리고 질소 1%로 일반적인 목질바이오매스와 큰 차이는 없는 것으로 나타났다. 그러나 화석자원에서 생산되는 오일류와 비교하여 바이오일은 산소함량이 매우 높았고 황은 전혀 포함되어 있지 않았다. 바이오오일의 GC 분석 결과 총 90여종의 방향족(aromatic) 또는 비방향족(non-aromatic) 저분자량 화합물이 검출되었으며 이들의 함량은 바이오오일 전건중량의 31~33%로 분석되었다.

Biomass-burning에서 배출되는 미세입자 (PM2.5)의 배출원 구성물질 성분비 개발에 관한 연구 (A Study on the Source Profile Development for Fine Particles (PM2.5) Emitted from Biomass Burning)

  • 강병욱;이학성
    • 한국대기환경학회지
    • /
    • 제28권4호
    • /
    • pp.384-395
    • /
    • 2012
  • This study was performed to develop the source profiles for fine particles ($PM_{2.5}$) emitted from the biomass burning. The multi-method research strategy included a usage of combustion devices such as field burning, fireplace, and residential wood burning to burn rice straw, fallen leaves, pine tree, and oak tree. The data were collected from multiple sources and measured water-soluble ions, elements, elemental carbon (EC), and organic carbon (OC). From this study, it turned out that OC (34~67%) and EC (1.2~39%) are the major components emitted from biomass burning. In the case of burning rice straw at field burning, OC (66.6%) was the most abundant species, followed by EC (4.3%), $Cl^-$ (3.6%), Cl (2.1%), and $SO^{2-}_4$(1.9%). Burning rice straw, fallen leaves, pine tree, and oak tree at fireplace, the amount of OC was 58.5%, 52.7%, 52.5%, and 61.2%, and that of EC was 1.2%, 18.4%, 36.5%, and 2.7%, respectively. The ratio of OC for the burning of pine tree and oak tree from the residential wood burning device was 56.9% and 34.3%, and that of EC was 25% and 38.6%, respectively. Applying the measured data with respect to the proportion of components emitted from biomass burning to reference model, it turned out that self-diagnosed result was appropriate level, and the result based on the model is in highly corresponding to actual timing of biomass burning.

무주지역 리기다소나무 임분의 지상부 바이오매스 추정 (Aboveground Biomass Estimation of Pinus rigida Stands in Muju Region)

  • 서연옥;이영진
    • 농업생명과학연구
    • /
    • 제45권1호
    • /
    • pp.15-20
    • /
    • 2011
  • 본 연구는 전북 무주지역 36년생 리기다소나무 임분을 대상으로 지상부 바이오매스 추정식을 개발하고, 줄기밀도와 바이오매스 확장계수를 산출하고자 하였다. 리기다소나무의 흉고직경을 독립변수로 하고 바이오매스를 종속변수로 하는 상대생장식을 추정한 결과, 잎 (78%)과 가지 (83%)를 제외하면 모든 부위에서 결정계수가 95% 이상의 높은 설명력을 나타냈다. 리기다소나무의 바이오매스량은 줄기 목질부 $65.9 Mg\;ha^{-1}$, 줄기 수피 $9.5Mg\;ha^{-1}$, 가지 $19.6Mg\;ha^{-1}$, 잎 $7.0Mg\;ha^{-1}$, 전체 $102Mg\;ha^{-1}$로 나타났으며, 바이오매스 구성비는 줄기목질부 (64.6%) > 가지 (19.2%) > 줄기 수피 (9.3%) > 잎 (6.9%) 순으로 나타났다. 리기다소나무의 줄기밀도 $(g/cm^{3})$는 0.453으로 나타났고, 바이오매스 확장계수는 1.344로 나타났다.

재생에너지로서 산림바이오매스 활용 촉진을 위한 주요국의 정책분석을 통한 한국의 접근전략 (S. Korea's Approach Strategy through Policy Analysis of Major Countries to Promote the Use of Forest Biomass as Renewable Energy)

  • 이승록;박세훈;고문현;한규성
    • 신재생에너지
    • /
    • 제18권3호
    • /
    • pp.10-22
    • /
    • 2022
  • Forest biomass energy is based on scientific evidence in response to carbon neutrality and the climate crisis, international consensus, and environmental-geographic characteristics of each nation. In this study, the authors aimed to analyze macroscopic forest biomass energy policies for ten major countries. They categorized them into six detailed categories (Sustainable utilization, Cascading Uutilization, Replacement of fossil fuel/Carbon intensive products, Utilization of forest by-products/residues as the source of energy, Contribution to carbon-neutral/climate change, and Biomass combined with CCS/CCUS ). In addition, the surveyed nations have developed a policy consensus on the active use of forest biomass with sustainable forest management except for the cascading utilization category. Furthermore, the authors evaluated the mid to long-term plans of the Korean government for improvements in the policy and legal aspects. As a result, the authors derived four major directions that South Korea should approach strategically in the future (1) secure financial resources for sustainable forest management and stimulating investment in the timber industry, (2) promote unified policies to establish a bio-economy, (3) enhancement of the forest biomass energy system, and (4) reorganization and promotion of strategy centered on the opinions of field experts in internal and external instability.

안전성이 높은 산업용 목재펠릿 보일러 개발 (Development of Industrial Wood Pellet Boiler with High Safety)

  • 정찬홍;박민철;이성영
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권1호
    • /
    • pp.31-44
    • /
    • 2013
  • Recently, due to the high rise of energy costs and environmental problem issues, much attention has been paid to wood pellets. Wood pellets are produced by compressing woody biomass into cylindrical form. Wood pellets are suitable for use at various scales in industrial furnaces for heat production to replace conventional fossil fuel energy sources since the use of wood pellet that is carbon neutral can alleviate global warming. This study presents the result of developing two industrial wood pellet boilers with high safety having capacities of 290kW and 440kW. Efficiency has been improved by using a rotating screw bar grate burner. Special attention has been paid to the improvement of the safety of the wood pellet boilers from backfire by adopting a triple protecting system composed of a rotary feeder, an air curtain, and a backfire protecting DC-fan.

Extraction of Hemicellulosic Sugar and Acetic Acid from Different Wood Species with Pressurized Dilute Acid Pretreatment

  • Um, Byung-Hwan;Park, Seong-Jik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권2호
    • /
    • pp.172-182
    • /
    • 2014
  • Extraction is a necessary element in the bioconversion of lignocellulosics to fuels and chemicals. Although various forms of chemical pretreatment of cellulosic materials have been proposed, their effectiveness varies depending on the treatment conditions and substrate. In this study, mixed hardwood (MH) and loblolly pine (LP) were pretreated with dilute acid in a 100 mL accelerated solvent extraction (ASE) at the predetermined optimal conditions: temperature: $170^{\circ}C$, acid concentration: 0.5% (w/v), and reaction time: 2~64 min. This method was highly effective for extracting the hemicellulose fraction. Total xmg (defined as the sum of xylose, mannose, and galactose) can be extracted from milled MH and LP through pressurized dilute acid treatment in maximum yields of 12.6 g/L and 15.3 g/L, respectively, representing 60.5% and 70.4% of the maximum possible yields, respectively. The crystallinity index increased upon pretreatment, reflecting the removal of the amorphous portion of biomass. The crystalline structure of the cellulose in the biomass, however, was not changed by the ASE extraction process.

Performance of Six-Layered Cross Laminated Timber of Fast-Growing Species Glued with Tannin Resorcinol Formaldehyde

  • Deazy Rachmi TRISATYA;Adi SANTOSO;Abdurrachman ABDURRACHMAN;Dina Alva PRASTIWI
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권2호
    • /
    • pp.81-97
    • /
    • 2023
  • The aim of this study were to evaluate tannin resorcinol formaldehyde (TRF) for the preparation of cross-laminated timbers (CLTs) made from fast-growing tree species and to analyze the physical and mechanical properties of CLTs. TRF copolymer resin was prepared by using the bark extracts of Swietenia mahagoni (L.) Jacq. It was observed that the TRF adhesive possessed less solid content (23.59%), high viscosity (11.35 poise), and high pH values (10.0) compared to the standard phenol resorcinol formaldehyde. The TRF adhesive was applied to produce CLTs with the addition of 15% tapioca and flour as an extender. The six-layered CLTs were produced from sengon (Falcataria moluccana Miq.), jabon [Anthocephalus cadamba (Roxb) Miq.], coconut (Cocos nucifera L.), and the combination of coconut-jabon and coconut-sengon wood. The analysis of variance revealed that the layer composition of CLT significantly affected the physical and mechanical properties of the beam. While the modulus of rupture met the standard, the moisture content and modulus of elasticity values did not fulfill JAS 1152-2007. All of the CLTs produced in this study demonstrated low formaldehyde emission, ranging from 0.001 mg/L to 0.003 mg/L, thereby satisfying the JAS 1152 for structural glue laminated timber.