Aboveground Biomass Estimation of Pinus rigida Stands in Muju Region

무주지역 리기다소나무 임분의 지상부 바이오매스 추정

  • Seo, Yeon-Ok (Department of Forest Resources, Kongju National University) ;
  • Lee, Young-Jin (Department of Forest Resources, Kongju National University)
  • 서연옥 (공주대학교 산림자원학과) ;
  • 이영진 (공주대학교 산림자원학과)
  • Received : 2010.11.24
  • Accepted : 2011.02.22
  • Published : 2011.02.28

Abstract

The objective of this study was to develop allometric equations and stem density and biomass expansion factor for Pinus rigida stands in Muju region. The coefficient of determination of the allometric equations in independent variable (dbh) and dependent variable (biomass) was more than 95% with the exception of leaf (78%) and branch(83%). The total biomass was $102Mg\;ha^{-1}$ ($65.9 Mg\;ha^{-1}$ from stem wood, $9.5Mg\;ha^{-1}$ from stem bark, $19.6Mg\;ha^{-1}$ from branch and $7.0Mg\;ha^{-1}$ from leaf). Biomass distribution ratio of Pinus rigida stands showed the highest in stem wood with 64.6%, followed by the branch with 19.2%, stem bark with 9.3% and the leaf with 6.9%. The results indicated that the stem density $(g/cm^{3})$ and the biomass expansion factor were 0.453 and 1.344, respectively.

본 연구는 전북 무주지역 36년생 리기다소나무 임분을 대상으로 지상부 바이오매스 추정식을 개발하고, 줄기밀도와 바이오매스 확장계수를 산출하고자 하였다. 리기다소나무의 흉고직경을 독립변수로 하고 바이오매스를 종속변수로 하는 상대생장식을 추정한 결과, 잎 (78%)과 가지 (83%)를 제외하면 모든 부위에서 결정계수가 95% 이상의 높은 설명력을 나타냈다. 리기다소나무의 바이오매스량은 줄기 목질부 $65.9 Mg\;ha^{-1}$, 줄기 수피 $9.5Mg\;ha^{-1}$, 가지 $19.6Mg\;ha^{-1}$, 잎 $7.0Mg\;ha^{-1}$, 전체 $102Mg\;ha^{-1}$로 나타났으며, 바이오매스 구성비는 줄기목질부 (64.6%) > 가지 (19.2%) > 줄기 수피 (9.3%) > 잎 (6.9%) 순으로 나타났다. 리기다소나무의 줄기밀도 $(g/cm^{3})$는 0.453으로 나타났고, 바이오매스 확장계수는 1.344로 나타났다.

Keywords

Acknowledgement

Grant : 교토의정서 대응 산림 탄소계정 기반구축

Supported by : 산림청

References

  1. Fukuda, M., lehara, T. and Matumato, M. 2003. Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management 184: 1-16. https://doi.org/10.1016/S0378-1127(03)00146-4
  2. IPCC. 2003. Good Practice Guidance for Land Use, Land-use Change and Foresty. Institute for Global Environmental strategies. Kanagawa, Japan. pp. 576.
  3. Jeong, J. Y., H. J. Cho, J. H. Seo, R. H. Kim, Y. M. Son, K. H. Lee and C. S. Kim. 2010. Aboveground biomass estimation of Pinus densiflora stands in the Western Gyeongnam Regions. Jour. Korean For. Soc. 99: 62-67.
  4. Kim, C. S., and J. H. Jeong. 2001. Change of aboveground carbon storage in a Pinus rigida stand in Gwangnung, Gyunggi-do, Korea. Jour. Korean For. Soc. 90: 774-780.
  5. Kim, J. H. 1971. Studies on the productivity and the production structure of the forests I. On the productivity of Pinus rigida plantation. Jour. Plant Bio. 14: 19-26.
  6. Kim, J. H. 1976. Studies on the productivity and the productive structure of the forests II. Comparison between the productivity of Pinus rigida and Pinus rigitaeda plantation. Jour. Plant Bio. 19: 85-91.
  7. Kim, J. S., Y. H. Son, J. H. Lim, and Z. S. Kim. 1996. Aboveground biomass, N and P distribution, and litterfall in Pinus rigida and Larix leptolepis plantations. Jour. Korean For. Soc. 85: 416-425.
  8. Kim, K. D., J. W. Park, I. H. Park, C. H. Kim, and S. H. Cheong. 1985. Growth and dry matter production of Pinus rigida Mill and Robinia pseudoacacia L. Jour. Korean For. Ener. 5: 1-9.
  9. Korea Forest Service. 2010. http://www.forest.go.kr/
  10. Korea Meteorological Administration. 2010. http://www.kma.go.kr/
  11. Korea Forest Research Institute. 2005. Global warming, United Nations Framework Convention on Climate Change, Forest. pp. 56. (In Korean)
  12. Korea Forest Research Institute. 2007. Pinus rigida stands management scheme. pp. 115.
  13. Kwon, K. C, and D. K. Lee. 2006. Biomass and energy content of Pinus rigida stand in Gwangju, Gyeonggi Province. Jour. Korean For. Ener. 25: 39-45.
  14. Lehtonen, A., R. Makipaa, J. Heikkinen, R. Sievanen, and J. Liski. 2004. Biomass expansion factors(BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecol. Manage. 188: 211-224. https://doi.org/10.1016/j.foreco.2003.07.008
  15. Lee, K. J., K. D. Kim, J. S. Kim, and I. H. Park. 1985. Distribution of biomass and production of Pinus rigida and Pinus rigida${\times}$taeda plantation. Journal of Korean For. Soc. 69: 28-35.
  16. Ovington, J. D. 1957. Dry-matter production by Pinus sylvestris L. Ann. Botany N.S. 21: 287-314.
  17. Park, I. H., M. S. Park, K. H. Lee, Y. M. Son, J. H. Son, Y. H. Son, and Y. J. Lee. 2005. Biomass expansion factors for Pinus densiflora in relation to ecotype and stand age. Jour. Korean For. Soc. 441-445.
  18. SAS Institute Inc., 2004. SAS/STAT 9.1 User's Guide. SAS Institute Inc., Cary. NC
  19. Seo, Y. O., Y. J. Lee, M. H. Lee, S. M. Park, I. H. Park, Y. H. Son, Y. M. Son, and K. H. Lee. 2006. Estimation of above and belowground biomass for Pitch pine(Pinus rigida) planted in Yesan. Korean J.For. Measure. 9: 1-9.
  20. Sprugel, D. G. 1983. Correction for bias in log-transformed allometric equation, Ecology 64: 200-210.
  21. Yim, J. S., H. J. Cho, J. H. Seo, R. H. Kim, Y. M. Son, K. H. Lee, and C. S. Kim. 2010. Estimation of forest biomass based upon satellite data and national forest inventory data. Korean J. Remote Sensing 25: 311-320. https://doi.org/10.7780/kjrs.2009.25.4.311