• Title/Summary/Keyword: Without transformer

Search Result 218, Processing Time 0.025 seconds

Application of the RC Filter for Suppressing the Output Overvoltage of the High-voltage Large-capacity Inverter (고압 대용량 인버터의 출력 과전압 억제를 위한 RC filter의 현장적용 시험에 관한 연구)

  • Woo, Myung-Ho;Park, Young-Min;Lee, Se-Hyun;Min, Byung-Duk;Seo, Kwang-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.962-964
    • /
    • 2001
  • In this paper, the RC filter for mitigating the output overvoltage of the 3-level 3300V 4MW inverter is described. The descriptions on power circuit and overvoltage phenomena are presented. The output transformer which may be used to obtain the higher output voltage, makes the filter design difficult because the parameter measurements are not easy and the accuracy may be poor. So, this paper presents several preliminary results on the output overvoltage with or without transformer to investigate the overall system characteristics. Some experimental results are also provided when the designed filter is applied.

  • PDF

An Investigation on the Fault Currents in 22.9 kV Distribution System Due to the Increased Capacity and Operating Conditions of Power Transformers in 154 kV Substation (154 kV 변전소 주변압기의 용량 및 운전조건이 22.9 kV 배전계통의 고장전류에 미치는 영향)

  • Cho, Seong-Soo;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.302-310
    • /
    • 2008
  • In order to evaluate the nominal rating of breakers in distribution system due to the increased capacity and operating conditions of power transformers in 154 kV substation, the fault currents in distribution system were calculated by the conventional method and simulations of PSCAD/EMTDC program. Consequently, under the condition of the parallel operation of transformers, the fault currents exceed the nominal current of the breakers in some areas. Without NGR at the secondary neutral of the transformer, the current of single line-to-ground fault was bigger than that of 3-phase fault. Therefore, the results clearly show that the measures to limit the fault currents in distribution system are needed when the increased capacity of power transformers is introduced into 154 kV substation.

A wide ZVS range two-transformer active-clamp forward converter with low conduction loss (낮은 도통손실을 가지며 넓은 영전압 스위칭 범위를 갖는 두 개의 변압기를 이용한 능동 클램프 포워드 컨버터)

  • Moon Sang-Cheol;Park Ki-Bum;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.369-371
    • /
    • 2006
  • Conventional active-clamp forward converter has narrow ZVS range of main switch. Although utilizing high magnetizing current can realize wide ZVS range, it increases the conduction loss. To solve this problem, a new asymmetric two-transformer active clamp forward converter is proposed. Proposed converter achieves wide ZVS range without severe conduction loss penalty, which results in high efficiency and high power density.

  • PDF

Clamp-type Bulk Optic Current Sensor (클램프헝 부피 광 전류센서)

  • Chung, Hyun;Lee, Yong-Wook;Kim, Soo-Gil;Lee, Byoung-Ho;Park, Byoung-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1924-1926
    • /
    • 2002
  • The optical current transformer using Faraday effect is the sensor to measure current that flows in any conductor. This sensor doesn't undergo the magnetic saturation and effect of adjacent conductors. But this senor using bulk-glass sensing clement has crucial drawback. It is impossible that the sensor is mounted to conductor without breaking the closed-loop of light or conductor. So we developed the clamp-type optical current transformer and made an experiment.

  • PDF

A New High Efficiency Half Bridge Converter with Improved ZVS Performance

  • Lee Sung-Sae;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.187-194
    • /
    • 2006
  • A new asymmetrical pulse width modulation (PWM) half bridge converter with improved ZVS performance is proposed. The ZVS operation of the proposed converter can be maintained from no load to full load conditions since the magnetizing current of the transformer contributes to the ZVS operation at light loads without considerable conduction loss of the transformer and switch. Synchronous rectification is employed to reduce the rectification loss. Operational principles, large signal modeling, ZVS analysis and design equations are presented. Experimental results demonstrate that the proposed converter can achieve a large ZVS range and significant improvement in efficiency for a 100W (5V, 20A) prototype converter.

Distance relay using the current transformer compensating algorithm (변류기 보상 알고리즘을 적용한 거리계전기)

  • Kang, Yong-Cheol;Lee, Hyun-Woong;Jang, Sung-Il;Kim, Yong-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.501-502
    • /
    • 2007
  • This paper describes a distance relay that operates in conjunction with a current transformer (CT) compensation algorithm. A distance relay detects a fault based on the ratio of the voltage to the current. If a CT saturates, the calculated impedance becomes larger. This causes maloperation or operating time delay of the distance relay. A compensating algorithm estimates the correct secondary current from the severely distorted currents even when the measurement CTs are used. The correct current is estimated by adding the calculated magnetizing current to the measured secondary current. Test results show that the proposed distance relay can detect a fault without the operating time delay even when the secondary currents are extremely distorted because of use of measurement CTs.

  • PDF

A Two-Phase Interleaved Single-Stage Isolated Boost-Half-Bridge AC-DC Converter using a Transformer with Flux Cancellation

  • Naradhipa, Adhistira M.;Kang, Suhan;Choi, Sewan
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.153-155
    • /
    • 2019
  • This paper proposes a two-phase interleaved bridgeless single-stage ac-dc converter with magnetic integration that can achieve CCM power factor correction without input current sensing. All switches achieve ZVS turn-on and all diodes achieve ZCS turn-on for the whole grid cycle. SDAB-based modulation strategy is applied which results in simple power control and wide range output voltage. A flux cancellation method to integrate the interleaved transformer is firstly proposed in this paper to reduce the core size and loss. Experimental results on a 1.7-kW, 50kHz prototype are given to verify the principle and advantages of the proposed ac-dc converter.

  • PDF

A Contact-less Power Supply for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 무접점 전원장치)

  • Lee, Hyun-Kwan;Kong, Young-Su;Kim, Yoon-Ho;Lee, Gi-Sik;Kang, Sung-In;Chung, Bong-Geun;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer Is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without my auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transformer are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

Ubiquitous Sensors for Supervision of Power Facilities in Overhead Power Distribution Lines (가공배전선로의 전력설비 감시를 위한 유비쿼터스 센서)

  • Kil, Gyung-Suk;Park, Dae-Won;Kim, Il-Kwon;Choi, Su-Yeon;Park, Chan-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.59-65
    • /
    • 2007
  • Recently, ubiquitous sensor network(USN) techniques have been applied to electric power facility management. This paper dealt with the designed and fabricated ubiquitous sensors which monitor transformers and lightning arresters installed in overhead distribution systems. The sensors consist of a 8-[bit] microprocessor unit, a wireless communication nodule specified in IEEE 802.15.4, and associated electronics. A Rogowski coil was fabricated to measure load of transformer and surge current without saturation having good linearity up to 1000[A]. A zero-phase current transformer with a high relative permeability of $10^5$ at 180[Hz] was used to detect small leakage current of $50[{\mu}A]{\sim}1[mA]$ flowing lightning arrester, and the frequency bandwidth of the module is ranges from 12[Hz] to 1.24[kHz] at -3[dB].

A Quasi Z-Source AC-AC Converter with a Low DC Voltage Distribution Capability Operating as a Power Electronic Transformer (전력전자 변압기로 동작하는 저전압 직류배전 기능을 갖는 Quasi Z-소스 AC-AC 컨버터)

  • Yoo, Dae-Hyun;Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.358-366
    • /
    • 2014
  • This paper proposes a quasi Z-source AC-AC converter with the low DC voltage distribution capability operating as a power electronic transformer. The proposed system has configuration that the input terminals of two quasi Z-source AC-AC converters are connected in parallel, also their output terminal are connected in series. Simple control method of duty ratio was proposed for the in phase buck-boost AC voltage mode and the DC output voltage control. DSP based experiment and PSIM simulation were performed. As a result, the PSIM simulation results were same with the measured results. By controlling the duty ratio under the condition of 100 [${\Omega}$] load, quasi Z-source AC-AC converter could buck and boost the AC output voltage in phase with the AC input voltage, and the same time, the constant DC voltage could be output without affecting the AC output characteristics. And, the DC output voltage 48[V] was constantly controlled in dynamic state in case while the load is suddenly changed ($50[\Omega]{\rightarrow}100[\Omega]$). From the above result, we could know that the quasi Z-source AC-AC converter can act as a power electronic transformer with a low DC voltage distribution capability.