• Title/Summary/Keyword: Without transformer

Search Result 219, Processing Time 0.022 seconds

Analysis, Design and Implementation of a New Chokeless Interleaved ZVS Forward-Flyback Converter

  • Taheri, Meghdad;Milimonfared, Jafar;Namadmalan, Alireza;Bayat, Hasan;Bakhshizadeh, Mohammad Kazem
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.499-506
    • /
    • 2011
  • This paper presents an interleaved active-clamping zero-voltage-switching (ZVS) forward-flyback converter without an output choke. The presented topology has two active-clamping circuits with two separated transformers. Because of the interleaved operation of the converter, the output current ripple will be reduced. The proposed converter can approximately share the total load current between the two secondaries. Therefore, the transformer copper loss and the rectifier diodes conduction loss can be decreased. The output capacitor is made of two series capacitors which reduces the peak reverse voltage of the rectifier diodes. The circuit has no output inductor and few semiconductor elements, such that the adopted circuit has a simpler structure, a lower cost and is suitable for high power density applications. A detailed analysis and the design of this new converter are described. A prototype converter has been implemented and experimental results have been recorded with an ac input voltage of 85-135Vrms, an output voltage of 12V and an output current of 16A.

Discrimination Method of Internal and External Fault of Current Differential Relay using Instantaneous Value of Current in Case of Fault with One end CT Saturation (편단 CT 포화 고장 발생시 양단 전류 순시치를 이용한 전류차동계전기의 내·외부 고장위치 판별방안)

  • Lee, Myoung-Hee;Choi, Hae-Sul;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1801-1806
    • /
    • 2012
  • This paper presents a simple and practical method which enables to prevent malfunction of protection relay due to differential current caused by one end CT saturation in case of external fault. This method uses difference of magnitude(instantaneous value) between the both end current just before the occurrence of differential current without a separate method to CT staturation detection. One end CT saturation is simulated by current transformer model using type-96 component and the presented method is verified by using EMTP MODELS with respect to internal and external fault with one end CT staturation. The presented method distinguished rightly bewteen external and internal fault with one end CT saturation. This information can be used to prevent malfunction of current differential protection relay in case of external fault. And this method is not affected by sampling rate and has no calculation burden, so it will be applicable to differential current protection relay with ease.

A New High Efficiency Phase Shifted Full Bridge Converter for a Power Sustaining Module of Plasma Display Panel

  • Lee Woo-Jin;Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2006
  • A new high efficiency phase shifted full bridge (PSFB) converter for the power sustaining module of a plasma display panel (PDP) is proposed in this paper. The proposed converter employs a voltage doubler rectifier without an output inductor. Since it has no output inductor, the voltage stresses of the secondary rectifier diodes can be clamped at the output voltage level. No dissipative resistor-capacitor (RC) snubber for rectifier diodes is needed. Therefore, high efficiency, as well as, a low noise output voltage can be realized. Due to the elimination of the large output inductor, it features a simple structure, lower cost, smaller mass and lighter weight. Furthermore, the proposed converter has wide zero voltage switching (ZVS) ranges with low current stresses of the primary switches. Also the resonance between the leakage inductor of the transformer and the capacitor of the voltage doubler cell reduces the current stresses of the rectifier diodes. In this paper, operational principles, an analysis of the proposed converter and experimental results are presented.

The Leakage Current Analysis of ZnO Arrester Using Leakage Current Dete (피뢰기 누설전류 분석장치를 이용한 ZnO 피뢰기의 누설전류 변화 분석)

  • Kim, Young-Chun;Moon, Sun-Ho;Oh, Jung-Hwan;Kim, Jae-Chul;Lee, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1082-1084
    • /
    • 1998
  • In this paper, we developed a diagnosis device for ZnO arrester to detect on-line leakage current and acquire data from the power distribution system. The arrester is important power equipment used in power transmission and distribution systems to protect the generator and the main transformer from surge and overvoltage. First of all we developed a diagnosis device for ZnO arrester leakage current. And then we detect the total leakage current by the developed device without disconnecting the arrester ground wire and analysis the 3rd order harmonic by Fast Fourier Transform(FFT) to diagnose the ZnO arrester deterioration. With measuring the total current and the resistive current of power distribution system in operation, we analysis the trend of resistive current component in the total leakage current. We expect the result will be promote the method to protect electrical utility and customer from accident.

  • PDF

A Three Phase Three-level PWM Switched Voltage Source Inverter with Zero Neutral Point Potential

  • Oh Won-Sik;Han Sang-Kyoo;Choi Seong-Wook;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.224-232
    • /
    • 2005
  • A new three phase three-level Pulse Width Modulation (PWM) Switched Voltage Source (SVS) inverter with zero neutral point potential is proposed. It consists of three single-phase inverter modules. Each module is composed of a switched voltage source and inverter switches. The major advantage is that the peak value of the phase output voltage is twice as high as that of a conventional neutral-point-clamped (NPC) PWM inverter. Thus, the proposed inverter is suitable for applications with low voltage sources such as batteries, fuel cells, or solar cells. Furthermore, three-level waveforms of the proposed inverter can be achieved without the switch voltage imbalance problem. Since the average neutral point potential of the proposed inverter is zero, a common ground between the input stage and the output stage is possible. Therefore, it can be applied to a transformer-less Power Conditioning System (PCS). The proposed inverter is verified by a PSpice simulation and experimental results based on a laboratory prototype.

A New High Power Factor Correction Diode Rectifier System (새로운 능동형 고역률 다이오드 정류기시스템)

  • 김현정;최세완;원충연;김규식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.543-550
    • /
    • 2003
  • Thin paper proposes a new three-phase rectifier that actively shapes the input current sinusoidal by means of two rectifier bridges, each followed by a dc-dc boost converter. The proposed approach draws sinusoidal input current at unity power factor and has output voltage regulation capability The size and weight of magnetic material Is reduced by Incorporating a low KVA three-phase autotransformer and by directly connecting the dc outputs each other without using low frequency interphase transformer(IPT). The operation principle is described along with simple control method, and experimental results on a 1.5KW prototype are provided.

A Study on the Space Vector PWM Inverter without Dead Time (데드 타임 없는 공간 벡터 전압 변조 인버터에 관한 연구)

  • Seo Il-Soo;Song Eui-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In a voltage source inverter, the dead time is necessary to prevent short circuits in the dc link. The dead time effect appears as a distortion of output voltages and currents. In recent years, the dead time compensation methods have been investigated in many literatures. This paper presents not the dead time compensation by sensing and calculation but the dead time elimination. The proposed inverter system doesn't need to sense load current and to calculate dead time. Adding some transformers to each leg, dead times in the inverter system are eliminated automatically. The proposed method is analyzed on each mode and verified through simulation results.

Current Sensorless MPPT Control Method for Dual-Mode PV Module-Type Interleaved Flyback Inverters

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.54-64
    • /
    • 2015
  • This paper presents a current sensorless maximum power point tracking (MPPT) control method for dual-mode photovoltaic (PV) module-type interleaved flyback inverters (ILFIs). This system, called the MIC (Module Integrated Converter), has been recently studied in small PV power generation systems. Because the MIC is an inverter connected to one or two PV arrays, the power system is not affected by problems with other inverters. However, since the each PV array requires an inverter, there is a disadvantage that the initial installation cost is increased. To overcome this disadvantage, this paper uses a flyback inverter topology. A flyback inverter topology has an advantage in terms of cost because it uses fewer parts than the other transformer inverter topologies. The MPPT control method is essential in PV power generation systems. For the MPPT control method, expensive dc voltage and current sensors are used in the MIC system. In this paper, a MPPT control method without current sensor where the input current is calculated by a simple equation is proposed. This paper also deals with dual-mode control. Simulations and experiments are carried out to verify the performance and effectiveness of the proposed current sensorless MPPT control method on a 110 [W] prototype.

DC-DC Converter for Integrated Voltage Control Method (전압 적분 제어법에 의한 DC-DC 컨버터)

  • 이현우;서기영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.10
    • /
    • pp.1590-1597
    • /
    • 1993
  • Power conversion system generally requires bidirectional converter. A storage energy of reactor is suppressed by regeneration of surplus electic energy in converter to power source. When an electric isolation in the power conversion system is required. the most suitable position for the isolation is the DC-Link part. A transformer in the DC part is minimized because of high repetition frequency. This paper proposes that power conversion system becomes bidirectional DC-DC converter with electric isolation by intergrated voltage control method. It is intergrated voltage control that makes system construciton simple, has control errow little quantity ans gets output response Quick. And the power-switches which should be operated is selected automatically without a detection of the current-direction.

  • PDF

Contactless Power Supply for DC Power Service in Hybrid Home Generation System (수용가 직류 서비스를 위한 무접점 전원장치)

  • Chung, Bong-Geun;Kang, Sung-In;Kim, Yoon-Ho;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.174-182
    • /
    • 2007
  • Among the alternative energy sources, the solar energy is recognized as an important energy source and its application is increasing. Especially in future, the hybrid solar energy generation system with battery will be widely used as an independent distributed power generation system. In this paper, a solar power hybrid home generation system using a contactless power supply (CPS) that can transfer an electric power without any mechanical contact by using magnetic coupling instead of the power transfer by directly supplying the DC power to the home electric system is proposed. The proposed system consists of a ZVS boost converter, a half bridge LLC resonant converter and contact-less transformer.