• Title/Summary/Keyword: Wireless transmitter

Search Result 465, Processing Time 0.024 seconds

Implementation of Effective Wireless Power Transmission Circuit for Low Power System

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.846-849
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that enables the power to transmit electromagnetic field to an electrical load without the use of wires. There are two kinds of magnetic resonant coupling and inductive coupling ways transmitting from the source to the output load. Compared with microwave method for energy transfer over a long distance, the magnetic resonance method has the advantages of reducing the barrier of electromagnetic wave and enhancing the efficiency of power transmission. In this paper, the wireless power transfer circuit having a resonant frequency of 13.45 MHz for the low power system is studied, and the hardware implementation is accomplished to measure the power transmission efficiency for the distance between the transmitter and the receiver.

Channel Characteristics of Indoor Wireless Infrared Communication System Due to Different Transceiver Conditions

  • Peng, Chuan;Wang, Zan;Kim, Ji-Do;Pan, Jae-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.198-203
    • /
    • 2008
  • In this paper, we consider the diffuse type of indoor wireless optical communication (WOC) system. To find the channel characteristics of indoor wireless infrared communication system, we investigate the simulation process to get the impulse response of diffuse type and analyze the scenario of the indoor structure which we have built. The simulation results of the impulse response include power ratio and time delay due to bounce times. We get and discuss the receiving power distribution according to six configurations which have different transmitter and receiver positions and reflection coefficients of the indoor structure assumed. The results of this paper are useful to design the indoor wireless optical communication systems.

Design of WiFi-AP Doppler Detection based Wireless Security Services (WiFi-AP 도플러 검파 기반의 무선 보안서비스 설계)

  • Kang, Min-Goo
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.16-19
    • /
    • 2014
  • In this paper, the beacon signals of WiFi doppler frequency detection based WiFi-AP was designed with the subcarrier between a transmitter and a receiver of WLAN(wireless LAN). We can use such signals to identify human moving as an antenna array and tracking of RF beam. This wireless security services with the combination of WiFi doppler frequency and adaptive beacon time signal was proposed for wireless detection and motion based services.

Develop an Effective Security Model to Protect Wireless Network

  • Ataelmanan, Somya Khidir Mohmmed;Ali, Mostafa Ahmed Hassan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.48-54
    • /
    • 2021
  • Security is an important issue for wireless communications and poses many challenges. Most security schemes have been applied to the upper layers of communications networks. Since in a typical wireless communication, transmission of data is over the air, third party receiver(s) may have easy access to the transmitted data. This work examines a new security technique at the physical layer for the sake of enhancing the protection of wireless communications against eavesdroppers. We examine the issue of secret communication through Rayleigh fading channel in the presence of an eavesdropper in which the transmitter knows the channel state information of both the main and eavesdropper channel. Then, we analyze the capacity of the main channel and eavesdropper channel we also analyze for the symbol error rate of the main channel, and the outage probability is obtained for the main transmission. This work elucidate that the proposed security technique can safely complement other Security approaches implemented in the upper layers of the communication network. Lastly, we implement the results in Mat lab

Analysis of Maximal Transmitter Power according to Distance between Hetero Systems Co-using a Co-channel (이기종시스템에서 동일채널공유시 단말간 이격거리에 따른 최대 송신전력 분석)

  • Cho, Ju-Phil;Lee, Il-Kyoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2505-2510
    • /
    • 2011
  • In this paper, we consider to obtain the criteria for maximal power of interfering transmitter according to distance between WiBro and WLAN in TVWS. We analyze this criteria as a parameter for co-use when hetero systems share the same frequency channels. In order to make an analysis of relationship between distance and power of two systems, we take into consideration on two cases. First, WiBro is an interfering transmitter and WLAN is a victim receiver. Second, WLAN is an interfering transmitter and WiBro is a victim receiver. Analyzed coexistence results under various co-use scenarios may be widely applied into the technique developed to get the coexisting condition for wireless devices using many communication protocols in same frequency.

Performance Analysis for System Co-existence between Adjacent Channels with Extended Hata and IEEE 802.11in TVWS (TV대역에서 IEEE 802.11과 Extended Hata 채널모델을 이용한 인접채널간 시스템 공존을 위한 성능 분석)

  • Cho, Ju-Phil;Lee, Il-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.37-42
    • /
    • 2012
  • In this paper, we analyze the maximum allowable transmitting output level of transmitter, which meets the required interference probability, in order to get the method that different communication systems can be existed and used simultaneously in adjacent channels. We analyze the performance result according to various density of interfering transmitter and transmitter output in hetero systems. In order to get the relationship with between density of interfering transmitter and transmitter output, we consider WiBro as an interfering transmitter, WLAN as a victim receiver and Extended Hata and IEEE 802.11 model as a channel environment respectively. Analyzed coexistence results may be widely applied into the technique developed to get the coexisting condition for wireless devices using many communication protocols in same frequency.

Implementation of Implantable Bluetooth Bio-telemetry System for Transmitting Acoustic Signals in the Body with Wireless Recharging Function (무선 충전 가능한 블루투스 방식의 체내 음향신호 전송용 이식형 바이오 텔레메트리 시스템 구현)

  • Lee, Sang-June;Kim, Myoung Nam;Lee, Jyung Hyun;Lim, Hyung-Gyu;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.652-662
    • /
    • 2015
  • It is necessary to develop small, implantable bio-telemetry systems which can measure and transmit patients' bio-signals from internal body to external receiver. When measuring bio-signals, like electrical bio-signals, acoustic bio-signal measurement has also a big clinical usefulness. But, sound signal has larger frequency bandwidth than any other bio-signals. When considering these issues, a wireless telemetry system which has rapid data transmission rate proportional to wide frequency bandwidth is necessary to be developed. The bluetooth module is used to overcome the data rate limitation caused by the large frequency bandwidth. In this paper, a novel multimedia bluetooth biotelemetry system was developed which consists of transmitter module located in the body and receiver device located outside of the body. The transmitter consists of microphone, bluetooth, and wireless charging device. And the receiver consists of bluetooth and codec system. The sound inside the skin is captured by microphone and sent to receiver by bluetooth while charging. The wireless charging system constantly supplies the electric power to the system. To verify the performance of the developed system, an in vitro experiment has been performed. The results show that the proposed biotelemetry system has ability to acquire the sound signals under the skin.

Implementation of An 1.5Gbit/s Wireless Data Transmission System at 300GHz Band (300GHz 대역 1.5Gbit/s 무선 데이터 전송 시스템 구현)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, an 1.5Gbit/s wireless data transmission system using the carrier frequency of 300 GHz band was implemented. The RF front-end was composed of schottky diode sub-harmonic mixer, frequency tripler, and horn antennas for transmitter and receiver, respectively. The LO frequencies of sub-harmonic mixer are 150GHz for transmit chain and 156GHz for receive chain. The ASK(Amplitude Shift Keying) modulation was used in the transmitter and the envelope detection method was used in the heterodyne receiver. The conversion loss of sub-harmonic mixer and implementation system loss were measured to be 9.8dB and 1.2dB, respectively. The 1.5Gbit/s video signal with HD-SDI format was transmitted over wireless distance of 40cm without optical lens(4.2m with optical lens) and displayed on HDTV at the transmitted average output power of $20{\mu}W$.