• Title/Summary/Keyword: Wireless sensor system

Search Result 1,729, Processing Time 0.035 seconds

A Study of Development of Highway Maintenance System of RFID Multiple Wireless-Network Environment (중연계 무선네트워크 환경의 도로유지관리계측 시스템 개발에 관한 연구)

  • Lee, Sang-Woo;Song, Jong-Keol;Nam, Wang-Hyun;Kim, Hak-Soo
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.147-152
    • /
    • 2006
  • Wireless Sensor Networks provide a new paradigm for sensing and disseminating information from various environments, with the potential to serve many and diverse applications. Recent advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas. For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field. In order to evaluate the application of field monitoring system, lab tests, field test and FEM analysis are conducted. Therefore the accuracy of RFID wireless sensor data is verified.

  • PDF

Wireless sensor networks for long-term structural health monitoring

  • Meyer, Jonas;Bischoff, Reinhard;Feltrin, Glauco;Motavalli, Masoud
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.263-275
    • /
    • 2010
  • In the last decade, wireless sensor networks have emerged as a promising technology that could accelerate progress in the field of structural monitoring. The main advantages of wireless sensor networks compared to conventional monitoring technologies are fast deployment, small interference with the surroundings, self-organization, flexibility and scalability. These features could enable mass application of monitoring systems, even on smaller structures. However, since wireless sensor network nodes are battery powered and data communication is the most energy consuming task, transferring all the acquired raw data through the network would dramatically limit system lifetime. Hence, data reduction has to be achieved at the node level in order to meet the system lifetime requirements of real life applications. The objective of this paper is to discuss some general aspects of data processing and management in monitoring systems based on wireless sensor networks, to present a prototype monitoring system for civil engineering structures, and to illustrate long-term field test results.

Design of LED Lighting System using Bluetooth Wireless Communcation (Bluetooth 무선 통신 기능을 이용한 LED 조명시스템 설계)

  • Kim, Hye Myeong;Yang, Woo Seok;Cho, Young Seek;Park, Dae Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • The Light Emitting Diode(LED) lighting control system proposed in this thesis is made up of a sensor module, a microcontroller, Bluetooth wireless communication, LED Driver, and LED downlight. The sensor module, comprised of an infrared sensor, an illumination sensor, and a temperature sensor, was designed to one Printed Circuit board(PCB). The system is able to identify the environment information collected by the sensor, and make it possible to control lighting automatically and manually through sensors. In addition, depending on users' conditions, a color temperature can be controlled. CS-1000, a spectroradiometer, was employed to measure the changing values of a color temperature in 8 steps. According to a test, it was found that it was possible to change a color temperature from 3187K of Warm White LED to 5598K of Cool White LED. The Bluetooth based wireless communication technique makes it possible to control more lighting devices than other wireless communication techniques does.

A study on the landslide detection method using wireless sensor network (WSN) and the establishment of threshold for issuing alarm (무선센서 네트워크를 이용한 산사태 감지방법 및 경로발령 관리 기준치 설정 연구)

  • Kim, Hyung-Woo;Kim, Goo-Soo;Chang, Sung-Bong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.262-267
    • /
    • 2008
  • Recently, landslides frequently occur on natural slope and/or man-made cut slope during periods of intense rainfall. With a rapidly increasing population on or near steep terrain, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide monitoring systems have been developed throughout the world. In this paper, a simple landslide detection system that enables people to escape the endangered area is introduced. The system is focused on the debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of wireless sensor nodes, gateway, and remote server system. Wireless sensor nodes and gateway are deployed by commercially available Microstrain G-Link products. Five wireless sensor nodes and one gateway are installed at the test slope for detecting ground movement. The acceleration and inclination data of test slope can be obtained, which provides a potential to detect landslide. In addition, thresholds to determine whether the test slope is stable or not are suggested by a series of numerical simulations, using geotechnical analysis software package. It is obtained that the alarm should be issued if the x-direction displacement of sensor node is greater than 20mili-meters and the inclination of sensor node is greater than 3 degrees. It is expected that the landslide detection method using wireless senor network can provide early warning where landslides are prone to occur.

  • PDF

Balancing Energy and Memory Consumption for Lifetime Increase of Wireless Sensor Network (무선 센서 네트워크의 수명 연장을 위한 에너지와 메모리의 균형 있는 소모 방법)

  • Kim, Tae-Rim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.361-367
    • /
    • 2014
  • This paper introduces balancing energy and memory consumption for lifetime increase of wireless sensor network. In cluster-based wireless sensor network, sensor nodes adjacent of cluster heads have a tendency to deplete their own battery energy and cluster heads occupy memory space significantly. If the nodes close to region where events occur frequently consume their energy and memory fully, network might be destroyed even though most of nodes are still alive. Therefore, it needs to balance network energy and memory with consideration of event occurrence probability so that network lifetime is increased. We show a method of balancing wireless sensor network energy and memory to organize cluster groups and elect cluster heads in terms of event occurrence probability.

Adaptive Sensing based on Fuzzy System for Ubiquitous Sensor Networks (유비쿼터스 센서네트워크를 위한 퍼지시스템 기반 적응형 센싱)

  • Mateo, Romeo Mark A.;Lee, Jae-Wan
    • Journal of Internet Computing and Services
    • /
    • v.9 no.3
    • /
    • pp.51-58
    • /
    • 2008
  • Wireless sensor networks are used by various application areas to implement smart data processing and ubiquitous system. In the recent research of parking management system based on wireless sensor networks, adaptive sensing and efficient data processing are not considered. The effectiveness of implementing these distributed computing devices affects the performance of the applications in parking management. This paper proposes an adaptive sensing using fuzzy wireless sensor for the ubiquitous networks of parking management system. The fuzzy inference system is encoded in the sensor for efficient car presence detection. Moreover, a rule base adaptive module is proposed which wirelessly transmit the new values to each sensor for adapting the environment of car park area. The result of experiments shows that the fuzzy wireless sensor provides more throughputs and less time delays compared to a normal method of data gathering by wireless sensors.

  • PDF

Effects of Impulsive Noise on the Performance of Uniform Distributed Multi-hop Wireless Sensor Networks

  • Rob, Jae-Sung
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.300-304
    • /
    • 2007
  • Wireless sensor networks represent a new and exciting communication paradigm which could have multiple applications in future wireless communication. Therefore, performance analysis of such a wireless sensor network paradigm is needed in complex wireless channel. Wireless networks could be an important means of providing ubiquitous communication in the future. In this paper, the BER performance of uniform distributed wireless sensor networks is evaluated in non-Gaussian noise channel. Using an analytical approach, the impact of Av. BER performance relating the coherent BPSK system at the end of a multi-hop route versus the spatial density of sensor nodes and impulsive noise parameters A and $\Gamma$ is evaluated.

Design of efficient location system for multiple mobile nodes in the wireless sensor network

  • Kim, Ki-Hyeon;Ha, Bong-Soo;Lee, Yong-Doo;Hong, Won-Kee
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.81-84
    • /
    • 2005
  • Various design schemes for network using wireless sensor nodes have been widely studied on the several application areas ranging from the real world information collection to environmental monitor. Currently, the schemes are focused on the design of sensor network for low power consumption, power-aware routing protocol, micro miniature operating system and sensor network middleware. The indoor localization system that identifies the location of the distributed nodes in a wireless sensor network requires features dealing with mobility, plurality and other environmental constraints of a sensor node. In this paper, we present an efficient location system to cope with mobility of multiple mobile nodes by designing a location handler that processes location information selectively depending on the nodes' density in a specific region. In order to resolve plurality of multiple mobile nodes, a routing method for the location system is also proposed to avoid the occurrence of overlapped location data.

  • PDF

Design and Fabrication of Low Power Sensor Network Platform for Ubiquitous Health Care

  • Lee, Young-Dong;Jeong, Do-Un;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1826-1829
    • /
    • 2005
  • Recent advancement in wireless communications and electronics has enabled the development of low power sensor network. Wireless sensor network are often used in remote monitoring control applications, health care, security and environmental monitoring. Wireless sensor networks are an emerging technology consisting of small, low-power, and low-cost devices that integrate limited computation, sensing, and radio communication capabilities. Sensor network platform for health care has been designed, fabricated and tested. This system consists of an embedded micro-controller, Radio Frequency (RF) transceiver, power management, I/O expansion, and serial communication (RS-232). The hardware platform uses Atmel ATmega128L 8-bit ultra low power RISC processor with 128KB flash memory as the program memory and 4KB SRAM as the data memory. The radio transceiver (Chipcon CC1000) operates in the ISM band at 433MHz or 916MHz with a maximum data rate of 76.8kbps. Also, the indoor radio range is approximately 20-30m. When many sensors have to communicate with the controller, standard communication interfaces such as Serial Peripheral Interface (SPI) or Integrated Circuit ($I^{2}C$) allow sharing a single communication bus. With its low power, the smallest and low cost design, the wireless sensor network system and wireless sensing electronics to collect health-related information of human vitality and main physiological parameters (ECG, Temperature, Perspiration, Blood Pressure and some more vitality parameters, etc.)

  • PDF

Energy Efficiency Localization System Based On Wireless Sensor Network (무선 센서 네트워크 기반의 에너지 효율적인 위치 탐색 시스템)

  • Jung, Won-Soo;Oh, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.497-498
    • /
    • 2007
  • The most of important thing when we design a Wireless Sensor Network is resources. You have to consider energy efficient operation When you design Wireless Sensor Network. Because Sensor devices have a limited resources. In this paper, we proposed energy efficiency localization technique in Wireless Sensor Network. We used Cell ID technique for location search. This method can reduce power consumption and the network life time will be extension.

  • PDF