• 제목/요약/키워드: Wireless sensor system

검색결과 1,729건 처리시간 0.045초

무선 센서 네트워크 기반의 빌딩 조명 제어 시스템 (Intelligent building light control system based on wireless sensor network)

  • 장정훈;유준재;윤명현;이명수;임호정;이민구;장동설
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.174-176
    • /
    • 2006
  • Sensor network supports data delivery from Physical world to cyber space. Sensors get physical events then wireless network transfers sensor data to service server. We use sensor network technology to light control system for intelligent building. In ubiquitous computing environment. wireless sensor network is basic tool for intelligent service. In this paper, we propose intelligent building light control system based on wireless sensor network. It is implemented using previous light control product, can be adopted to present building light system.

  • PDF

무선센서 네트워크에 의한 경사면 계측 실용화 연구 (Landslide monitoring using wireless sensor network)

  • 김형우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1324-1331
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes and gateway are deployed with Microstrain G-Link system. Five wireless sensor nodes and gateway are installed at the man-made slope to detect landslide. It is found that the acceleration data of each sensor node can be obtained via wireless sensor networks. Additionally, thresholds to determine whether the slope will be stable or not are proposed using finite element analysis. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

무선 기반의 광섬유 간섭계형 맥파센서 시스템 (Wireless Optical Fiber Interferometer Arterial Pulse Wave Sensor System)

  • 박재희;신종덕
    • 센서학회지
    • /
    • 제22권6호
    • /
    • pp.439-443
    • /
    • 2013
  • A wireless optical fiber interferometer arterial pulse wave sensor system is developed for remote sensing. The wireless optical fiber sensor system consists of Zigbee communication modules and an optical fiber interferometer arterial pulse wave sensor. The optical fiber arterial pulse wave sensor is an in-line Michelson interferometer enclosed with steel reinforcement in a heat-shrinkable tube. The Zigbee communication modules are composed of an ATmega128L microprocessor and a CC2420 Zigbee chip. The arterial pulse waves detected by the optical fiber sensor were transmitted and received via the Zigbee communication modules. The experimental results show that the wireless optical fiber sensor system can be used for monitoring the arterial pulse waves remotely.

QRS검출에 의한 ECG분석 기능을 갖춘 무선센서노드를 활용한 u-헬스케어 시스템 (An u-healthcare system using an wireless sensor node with ECG analysis function by QRS-complex detection)

  • 이대석;;정완영
    • 센서학회지
    • /
    • 제16권5호
    • /
    • pp.361-368
    • /
    • 2007
  • Small size real-time ECG signal analysis function by QRS-complex detection was put into sensor nodes. Wireless sensor nodes attached on the patient’s body transmit ECG data continuously in normal u-healthcare system. So there are heavy communication traffics between sensor nodes and gateways. New developed platform for real-time analysis of ECG signals on sensor node can be used as an advanced diagnosis and alarming system for healthcare. Sensor node does not need to transmit ECG data all the time in wireless sensor network and to server PC via gateway. When sensor node detects suspicion or abnormality in ECG, then the ECG data in the network was transmitted to the server PC for further powerful analysis. This system can reduce data packet overload and save some power in wireless sensor network. It can also increase the server performance.

SoC를 이용한 소형 무선 센서 노드 설계 (Design of Miniaturized Wireless Sensor Node Using System-on-Chip)

  • 김현중;양현호
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 추계학술발표논문집
    • /
    • pp.190-193
    • /
    • 2009
  • 무선 센서 네트워크에서 가장 중요하고 기본적인 요소는 환경 정보를 수집하고 이를 사용자 응용시스템에 전송하는 무선 센서 노드이다. 무선 센서 노드는 센서로 환경 정보를 수집하고 이를 저장, 가공하여 처리된 데이터를 사용자에게 전송하는 무선 송수신 장치로 기술의 발전에 따라 소형화, 지능화되고 있다. 특히 마이크로컨트롤러, RF 모듈, 메모리 등을 하나의 칩 내부에 모두 통합하는 SoC(System-on-Chip)기술은 센서 노드의 소형화와 제조 단가를 낮추는데 중요한 역할을 한다. 본고에서는 상용 SoC를 사용하여 무선 센서 네트워크를 위한 소형 무선 센서 노드를 설계하였으며 이를 이용한 여러 활용 방안 및 추가적인 고려사항에 대하여 논하였다.

  • PDF

무선 센서네트워크를 이용한 애완견용 무선 관리 시스템의 설계 및 구현 (Design and Implementation of Wireless Management System for Pet Dog Using Wireless Sensor Network)

  • 김동성
    • 정보통신설비학회논문지
    • /
    • 제5권1호
    • /
    • pp.13-24
    • /
    • 2006
  • This paper proposes a wireless management system for a pet dog using wireless sensor network. The developed intelligent wireless management system is compose of a central control system, auto-feeder, miniguidance robot, and wireless sensing devices. The developed system uses three types of sensed data such as light, temperature, md sounds from a pet dog and surrounded environment respectively. The presented design method using these data provides an efficient way to controlling and monitoring the pet dog. The implemented system can be used as a design framework of portable device for the pet management.

  • PDF

무선 센서네트워크를 이용한 애완견용 무선 관리 시스템의 설계 및 구현 (Design and Implementation of Wireless Management System for Pet Dog Using Wireless Sensor Network)

  • 김동성
    • 정보통신설비학회논문지
    • /
    • 제7권1호
    • /
    • pp.1-13
    • /
    • 2007
  • This paper proposes a wireless management system for a pet dog using wireless sensor network. The developed intelligent wireless management system is compose of a central control system, auto-feeder, mini-guidance robot, and wireless sensing devices. The developed system uses three types of sensed data such as light, temperature, and sounds from a pet dog and surrounded environment respectively. The presented design method using these data provides an efficient way to controlling and monitoring the pet dog. The implemented system can be used as a design framework of portable device for the pet management.

  • PDF

Concrete structural health monitoring using piezoceramic-based wireless sensor networks

  • Li, Peng;Gu, Haichang;Song, Gangbing;Zheng, Rong;Mo, Y.L.
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.731-748
    • /
    • 2010
  • Impact detection and health monitoring are very important tasks for civil infrastructures, such as bridges. Piezoceramic based transducers are widely researched for these tasks due to the piezoceramic material's inherent advantages of dual sensing and actuation ability, which enables the active sensing method for structural health monitoring with a network of piezoceramic transducers. Wireless sensor networks, which are easy for deployment, have great potential in health monitoring systems for large civil infrastructures to identify early-age damages. However, most commercial wireless sensor networks are general purpose and may not be optimized for a network of piezoceramic based transducers. Wireless networks of piezoceramic transducers for active sensing have special requirements, such as relatively high sampling rate (at a few-thousand Hz), incorporation of an amplifier for the piezoceramic element for actuation, and low energy consumption for actuation. In this paper, a wireless network is specially designed for piezoceramic transducers to implement impact detection and active sensing for structural health monitoring. A power efficient embedded system is designed to form the wireless sensor network that is capable of high sampling rate. A 32 bit RISC wireless microcontroller is chosen as the main processor. Detailed design of the hardware system and software system of the wireless sensor network is presented in this paper. To verify the functionality of the wireless sensor network, it is deployed on a two-story concrete frame with embedded piezoceramic transducers, and the active sensing property of piezoceramic material is used to detect the damage in the structure. Experimental results show that the wireless sensor network can effectively implement active sensing and impact detection with high sampling rate while maintaining low power consumption by performing offline data processing and minimizing wireless communication.

무선 센서 네트워크 운영체제 기술 동향 분석 (Analysis architecture of embedded operating systems for wireless sensor network)

  • 강정훈;유준재;윤명현;이명수;임호정;이민구;황성일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.177-179
    • /
    • 2006
  • This paper presents an analysis architecture of embedded operating systems for wireless sensor network. Wireless multi-hop sensor networks use battery-operated computing and sensing device. We expect sensor networks to be deployed in an ad hoc fashion, with very high energy constraints. These characteristics of multi-hop wireless sensor networks and applications motivate an operating system that is different from traditional embedded operating system. These days new wireless sensor network embedded operating system come out with some advances compared with previous ones. The analysis is focusing on understanding differences of dominant wireless sensor network OS, such as TinyOS 2.0 with TinyOS 1.x.

  • PDF

Localization Algorithm for Wireless Sensor Networks Based on Modified Distance Estimation

  • Zhao, Liquan;Zhang, Kexin
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1158-1168
    • /
    • 2020
  • The distance vector-hop wireless sensor node location method is one of typical range-free location methods. In distance vector-hop location method, if a wireless node A can directly communicate with wireless sensor network nodes B and C at its communication range, the hop count from wireless sensor nodes A to B is considered to be the same as that form wireless sensor nodes A to C. However, the real distance between wireless sensor nodes A and B may be dissimilar to that between wireless sensor nodes A and C. Therefore, there may be a discrepancy between the real distance and the estimated hop count distance, and this will affect wireless sensor node location error of distance vector-hop method. To overcome this problem, it proposes a wireless sensor network node location method by modifying the method of distance estimation in the distance vector-hop method. Firstly, we set three different communication powers for each node. Different hop counts correspond to different communication powers; and so this makes the corresponding relationship between the real distance and hop count more accurate, and also reduces the distance error between the real and estimated distance in wireless sensor network. Secondly, distance difference between the estimated distance between wireless sensor network anchor nodes and their corresponding real distance is computed. The average value of distance errors that is computed in the second step is used to modify the estimated distance from the wireless sensor network anchor node to the unknown sensor node. The improved node location method has smaller node location error than the distance vector-hop algorithm and other improved location methods, which is proved by simulations.