• Title/Summary/Keyword: Wireless heterogeneous networks

검색결과 289건 처리시간 0.019초

Formalizing the Design, Evaluation, and Analysis of Quality of Protection in Wireless Networks

  • Lim, Sun-Hee;Yun, Seung-Hwan;Lim, Jong-In;Yi, Ok-Yeon
    • Journal of Communications and Networks
    • /
    • 제11권6호
    • /
    • pp.634-644
    • /
    • 2009
  • A diversity of wireless networks, with rapidly evolving wireless technology, are currently in service. Due to their innate physical layer vulnerability, wireless networks require enhanced security components. WLAN, WiBro, and UMTS have defined proper security components that meet standard security requirements. Extensive research has been conducted to enhance the security of individual wireless platforms, and we now have meaningful results at hand. However, with the advent of ubiquitous service, new horizontal platform service models with vertical crosslayer security are expected to be proposed. Research on synchronized security service and interoperability in a heterogeneous environment must be conducted. In heterogeneous environments, to design the balanced security components, quantitative evaluation model of security policy in wireless networks is required. To design appropriate evaluation method of security policies in heterogeneous wireless networks, we formalize the security properties in wireless networks. As the benefit of security protocols is indicated by the quality of protection (QoP), we improve the QoP model and evaluate hybrid security policy in heterogeneous wireless networks by applying to the QoP model. Deriving relative indicators from the positive impact of security points, and using these indicators to quantify a total reward function, this paper will help to assure the appropriate benchmark for combined security components in wireless networks.

Communication Pattern Based Key Establishment Scheme in Heterogeneous Wireless Sensor Networks

  • Kim, Daehee;Kim, Dongwan;An, Sunshin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1249-1272
    • /
    • 2016
  • In this paper, we propose a symmetric key establishment scheme for wireless sensor networks which tries to minimize the resource usage while satisfying the security requirements. This is accomplished by taking advantage of the communication pattern of wireless sensor networks and adopting heterogeneous wireless sensor networks. By considering the unique communication pattern of wireless sensor networks due to the nature of information gathering from the physical world, the number of keys to be established is minimized and, consequently, the overhead spent for establishing keys decreases. With heterogeneous wireless sensor networks, we can build a hybrid scheme where a small number of powerful nodes do more works than a large number of resource-constrained nodes to provide enhanced security service such as broadcast authentication and reduce the burden of resource-limited nodes. In addition, an on-demand key establishment scheme is introduced to support extra communications and optimize the resource usage. Our performance analysis shows that the proposed scheme is very efficient and highly scalable in terms of storage, communication and computation overhead. Furthermore, our proposed scheme not only satisfies the security requirements but also provides resilience to several attacks.

A scheme on multi-tier heterogeneous networks for citywide damage monitoring in an earthquake

  • Fujiwara, Takahiro;Watanabe, Takashi;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • 제11권5호
    • /
    • pp.497-510
    • /
    • 2013
  • Quick, accurate damage monitoring is strongly required for damage assessment in the aftermath of a large natural disaster. Wireless sensor networks are promising technologies to acquire damage information in a citywide area. The wireless sensor networks, however, would be faced with difficulty to collect data in real-time and to expand the scalability of the networks. This paper discusses a scheme of network architecture to cove a whole city in multi-tier heterogeneous networks, which consist of wireless sensor networks, access networks and a backbone network. We first review previous studies for citywide damage monitoring, and then discuss the feature of multi-tier heterogeneous networks to cover a citywide area.

A Virtual-Queue based Backpressure Scheduling Algorithm for Heterogeneous Multi-Hop Wireless Networks

  • Jiao, Zhenzhen;Zhang, Baoxian;Zheng, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권12호
    • /
    • pp.4856-4871
    • /
    • 2015
  • Backpressure based scheduling has been considered as a promising technique for improving the throughput of a wide range of communication networks. However, this scheduling technique has not been well studied for heterogeneous wireless networks. In this paper, we propose a virtual-queue based backpressure scheduling (VQB) algorithm for heterogeneous multi-hop wireless networks. The VQB algorithm introduces a simple virtual queue for each flow at a node for backpressure scheduling, whose length depends on the cache size of the node. When calculating flow weights and making scheduling decisions, the length of a virtual queue is used instead of the length of a real queue. We theoretically prove that VQB is throughput-optimal. Simulation results show that the VQB algorithm significantly outperforms a classical backpressure scheduling algorithm in heterogeneous multi-hop wireless networks in terms of the packet delivery ratio, packet delivery time, and average sum of the queue lengths of all nodes per timeslot.

A Robust Mobile Video Streaming in Heterogeneous Emerging Wireless Systems

  • Oh, Hayoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권9호
    • /
    • pp.2118-2135
    • /
    • 2012
  • With the rapid development of heterogeneous emerging wireless technologies and numerous types of mobile devices, the need to support robust mobile video streaming based on the seamless handover in Future Internet is growing. To support the seamless handover, several IP-based mobility management protocols such as Mobile IPv6 (MIPv6), fast handover for the MIPv6 (FMIPv6), Hierarchical MIPv6 (HMIPv6) and Proxy Mobile IPv6 (PMIPv6) were developed. However, MIPv6 depreciates the Quality-of-Service (QoS) and FMIPv6 is not robust for the video services in heterogeneous emerging wireless networks when the Mobile Node (MN) may move to another visited network in contrast with its anticipation. In Future Internet, the possibility of mobile video service failure is more increased because mobile users consisting of multiple wireless network interfaces (WNICs) can frequently change the access networks according to their mobility in heterogeneous wireless access networks such as 3Generation (3G), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMax) and Bluetooth co-existed. And in this environment, seamless mobility is coupled according to user preferences, enabling mobile users to be "Always Best Connected" (ABC) so that Quality of Experience is optimised and maintained. Even though HMIPv6 and PMIPv6 are proposed for the location management, handover latency enhancement, they still have limit of local mobility region. In this paper, we propose a robust mobile video streaming in Heterogeneous Emerging Wireless Systems. In the proposed scheme, the MN selects the best-according to an appropriate metric-wireless technology for a robust video streaming service among all wireless technologies by reducing the handover latency and initiation time when handover may fail. Through performance evaluation, we show that our scheme provides more robust mechanism than other schemes.

Multi-homing in Heterogeneous Wireless Access Networks: A Stackelberg Game for Pricing

  • Lee, Joohyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.1973-1991
    • /
    • 2018
  • Multimedia applications over wireless networks have been evolving to augmented reality or virtual reality services. However, a rich data size compared to conventional multimedia services causes bandwidth bottlenecks over wireless networks, which is one of the main reasons why those applications are not used widely. To overcome this limitation, bandwidth aggregation techniques, which exploit a multi-path transmission, have been considered to maximize link utilization. Currently, most of the conventional researches have been focusing on the user end problems to improve the quality of service (QoS) through optimal load distribution. In this paper, we address the joint pricing and load distribution problem for multi-homing in heterogeneous wireless access networks (ANs), considering the interests of both the users and the service providers. Specifically, we consider profit from resource allocation and cost of power consumption expenditure for operation as an utility of each service provider. Here, users decide how much to request the resource and how to split the resource over heterogeneous wireless ANs to minimize their cost while supporting the required QoS. Then, service providers compete with each other by setting the price to maximize their utilities over user reactions. We study the behaviors of users and service providers by analyzing their hierarchical decision-making process as a multileader-, multifollower Stackelberg game. We show that both the user and service provider strategies are closed form solutions. Finally, we discuss how the proposed scheme is well converged to equilibrium points.

Priority Based Interface Selection for Overlaying Heterogeneous Networks

  • Chowdhury, Mostafa Zaman;Jang, Yeong-Min
    • 한국통신학회논문지
    • /
    • 제35권7B호
    • /
    • pp.1009-1017
    • /
    • 2010
  • Offering of different attractive opportunities by different wireless technologies trends the convergence of heterogeneous networks for the future wireless communication system. To make a seamless handover among the heterogeneous networks, the optimization of the power consumption, and optimal selection of interface are the challenging issues. The access of multi interfaces simultaneously reduces the handover latency and data loss in heterogeneous handover. The mobile node (MN) maintains one interface connection while other interface is used for handover process. However, it causes much battery power consumption. In this paper we propose an efficient interface selection scheme including interface selection algorithms, interface selection procedures considering battery power consumption and user mobility with other existing parameters for overlaying networks. We also propose a priority based network selection scheme according to the service types. MN‘s battery power level, provision of QoS/QoE and our proposed priority parameters are considered as more important parameters for our interface selection algorithm. The performances of the proposed scheme are verified using numerical analysis.

중첩된 이기종 무선망에서의 다중 무선 서비스 프레임워크 (A Framework for Multiple Wireless Services in Heterogeneous Wireless Networks)

  • 신충용;조진성
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.85-94
    • /
    • 2008
  • WLAN, WiBro, cdma2000, HSDPA와 같은 여러 이기종 무선 네트워크 서비스가 늘어나고 무선 서비스를 사용하기 위한 사용자의 선택의 폭도 점점 커짐에 따라 다양한 이기종 무선인터페이스를 동시에 사용하고자 하는 Multiple Care-of Address 방안이 IETF MONAMI6 WG에서 제안되었다. 이 방안을 통해 단말은 다중 인터페이스를 사용하여 동시에 여러 네트워크로의 접속이 가능하다 이처럼 다양한 무선 접속 기술은 All-IP 기반 핵심망에 연결되어 통합되는 형태로 발전하고 있으며 무선 접속 기술의 커버리지에 따라 이기종 무선망이 중첩되어 운영되고 있어, 이에 대한 고려가 요구되고 있다. 이에 따라 4G를 위한 차세대 네트워크와 현존하는 이기종 인터페이스를 지원하는 서비스 프레임워크가 요구되는 실정이다. 본 논문에서는 현재 서비스되고 있는 환경을 고려한 이기종 무선 서비스 프레임워크를 제안하고 여러 인터페이스 특성과 사용자 정의를 고려하여 효율적인 네트워크를 선택하는 수정된 MCoA (Multiple Care-of Address) 방안과 다중 인터페이스 핸드오버 상황에 따른 패킷 손실을 최소화하는 방안을 제안한다.

  • PDF

Converged Mobile Cellular Networks and Wireless Sensor Networks for Machine-to-Machine Communications

  • Shan, Lianhai;Li, Zhenhong;Hu, Honglin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권1호
    • /
    • pp.147-161
    • /
    • 2012
  • In recent years, machine-to-machine (M2M) communications are under rapid development to meet the fast-increasing requirements of multi-type wireless services and applications. In order to satisfy M2M communications requirements, heterogeneous networks convergence appears in many areas, i.e., mobile cellular networks (MCNs) and wireless sensor networks (WSNs) are evolving from heterogeneous to converged. In this paper, we introduce the system architecture and application requirement for converged MCN and WSN, where mobile terminals in MCN are acting as both sensor nodes and gateways for WSN. And then, we discuss the joint optimization of converged networks for M2M communications. Finally, we discuss the technical challenges in the converged process of MCN and WSN.

Markov Chain based Packet Scheduling in Wireless Heterogeneous Networks

  • Mansouri, Wahida Ali;Othman, Salwa Hamda;Asklany, Somia
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.1-8
    • /
    • 2022
  • Supporting real-time flows with delay and throughput constraints is an important challenge for future wireless networks. In this paper, we develop an optimal scheduling scheme to optimally choose the packets to transmit. The optimal transmission strategy is based on an observable Markov decision process. The novelty of the work focuses on a priority-based probabilistic packet scheduling strategy for efficient packet transmission. This helps in providing guaranteed services to real time traffic in Heterogeneous Wireless Networks. The proposed scheduling mechanism is able to optimize the desired performance. The proposed scheduler improves the overall end-to-end delay, decreases the packet loss ratio, and reduces blocking probability even in the case of congested network.