• Title/Summary/Keyword: Wireless Power Generation

Search Result 155, Processing Time 0.023 seconds

A design on Light-Weight Key Exchange and Mutual Authentication Routing Protocol in Sensor Network Environments (센서네트워크 환경에서 경량화된 키 교환 및 상호인증 라우팅 프로토콜)

  • Lee, Kwang-Hyoung;Lee, Jae-Seung;Min, So-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7541-7548
    • /
    • 2015
  • Wireless Sensor Networks is the technology which is used in explore role for military purposes, as well as various fields such as industrial equipment management, process management, and leverage available technologies by distributing node into various areas. but there are some limitations about energy, processing power, and memory storage capacity in wireless sensor networks environment, because of tiny hardware, so various routing protocols are proposed to overcome it. however existing routing protocols are very vulnerable in the intercommunication, because they focus on energy efficiency, and they can't use existing encryption for it, Because of sensor's limitations such like processing power and memory. Therefore, this paper propose mutual authentication scheme that prevent various security threats by using mutual authentication techniques and, Key generation and updating system as taking into account energy efficiency.

Research into The Future Development of the Hybrid System for Buoy

  • Lee, Ji-Young;Kim, Jong-Do;Lee, Jong-Ho;Lee, Jin-Yeol;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.583-591
    • /
    • 2007
  • This paper reports the performance of a 150W PV-wave hybrid system with battery storage in buoy. This system was originally designed to meet a new hybrid ower system for buoy in Korea. In the case or lighted buoys and lighthouses, a light failure alarm system of wireless radio is attached so that light failures are immediately notified to the office. At lighthouse offshore fixed lights and light buoys where commercial electricity is not available, the power source depends on solar system and batteries. This power system has a various problems. Therefore energy derived from the sunshine, wind and waves has been used as the energy source lot aids to navigation. Recently a hybrid system of combining the solar, wind and the wave generator is a favorable system lot the ocean facilities like lighthouse and buoy. The hybrid system in this paper is intended for variable DC load like light, communication system in the buoy and includes a PV-wane generation system and battery. This is composed a high efficiency charging algorithm, switching converter and controller. This paper includes discussion on system reliability, power quality, and effects of hybrid system in the buoy. Simulation and experimental results show excellent performance.

Evaluation Of LoRaWAN In A Highly Dense Environment With Design Of Common Automated Metering Platform (CAMP) Based On LoRaWAN Protocol

  • Paul, Timothy D;Rathinasabapathy, Vimalathithan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1540-1560
    • /
    • 2022
  • Latest technological innovation in the development of compact lower power radios has led to the explosion of Internet of Things. With Wi-Fi, Zigbee and other physical layer protocols offering short coverage area there was a need for a RF protocol that had a larger coverage area with low power consumption. LoRa offers Long Range with lower power consumption. LoRa offers point to point and point to multipoint connections. with Single hop communication in place the need for routing protocols are eliminated. LoRa Wide Area Network stack can accommodate thousands of nodes under a single LoRa gateway with a single hop communication between the end nodes and LoRaWAN gateway. This paper takes an experimental approach to analyze the basic physical layer parameters of LoRa and the practical coverage offered by a LoRaWAN under highly dense urban conditions with variable topography. The insights gained from the practical deployment of the LoRaWAN network, and the subsequent performance analysis is used to design a novel public utility monitoring platform. The second half of the papers is designing a robust platform to integrate both existing wired sensor water meters, current and future generation wireless water meters. The Common Automated Metering Platform is designed to integrate both wired sensors and wireless (LoRaWAN and Wi-Fi) supported water meters. This integrated platform reduces the number of nodes under each LoRaWAN gateway and thus improves the scalability of the network. This architecture is currently designed to accommodate one utility application but can be modified to integrate multi-utility applications.

Adaptive Power Control Dynamic Range Algorithm in WCDMA Downlink Systems (WCDMA 하향 링크 시스템에서의 적응적 PCDR 알고리즘)

  • 정수성;박형원;임재성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.918-927
    • /
    • 2004
  • WCDMA system is 3rd generation wireless mobile system specified by 3GPP. In WCDMA downlink, two power control schemes are operated. One is inner loop power control operated in every slot. Another is outer loop power control based on one frame time. Base station (BS) can estimate proper transmission power by these two power control schemes. However, because each MS's transmission power makes a severe effect on BS's performance, BS cannot give excessive transmission power to the specific user. 3GPP defined Power Control Dynamic Range (PCDR) to guarantee proper BS's performance. In this paper, we propose Adaptive PCDR algorithm. By APCDR algorithm, Radio Network Controller (RNC) can estimate each MS's current state using received signal to interference ratio (SIR). APCDR algorithm changes MS's maximum code channel power based on frame. By proposed scheme, each MS can reduce wireless channel effect and endure outages in cell edge. Therefore, each MS can obtain better QoS. Simulation result indicate that APCDR algorithm show more attractive output than fixed PCDR algorithm.

Adaptive Power Control Dynamic Range Algorithm in WCDMA Downlink Systems (WCDMA 하향 링크 시스템에서의 적응적 PCDR 알고리즘)

  • Jung, Soo-Sung;Park, Hyung-Won;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.1048-1057
    • /
    • 2004
  • WCDMA system is 3rd generation wireless mobile system specified by 3GPP. In WCDMA downlink, two power control schemes are operated. One is inner loop power control operated m every slot Another is outer loop power control based on one frame time. Base staion (BS) can estimate proper transmission power by these two power control schemes. However, because each MS's transmission power makes a severe effect on BS's performance, BS cannot give excessive transmission power to the speclfic user 3GPP defined Power Control Dynamic Range (PCDR) to guarantee proper BS's performance. In this paper, we propose Adaptive PCDR algorithm. By APCDR algorithm, Radio Network Controller (RNC) can estimate each MS's current state using received signal to interference ratio (SIR) APCDR algorithm changes MS's maximum code channel power based on frame. By proposed scheme, each MS can reduce wireless channel effect and endure outages in cell edge. Therefore, each MS can obtain better QoS. Simulation result indicate that APCDR algorithm show more attractive output than fixed PCDR algorithm.

Multipath Searcher for W-CDMA System (W-CDMA 시스템을 위한 다중경노 탐색기)

  • 원석호;김환우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6B
    • /
    • pp.601-609
    • /
    • 2002
  • In multi-path wireless channels with time-variant delay profile, a mobile station measures the received signal strength and report it to network which performs network control function such as handover. In order to improve the maximum ratio combining (MRC) gain, it also should search the strongest signal paths and measure their time offsets fast and exactly. This paper proposes some methods of fast and exactly measuring the multi-path signal strength and time offset. Since the W-CDMA system adopts antenna diversity technique for the next generation high speed packet access (HSDPA) service, we derive the optimum design parameter values for the proposed methods through computer simulations under the HSDPA conditions o( low speed of mobile, of no power control, and of multi-path wireless environment with transmit and receive antenna diversity. Finally, we prove the validity of the proposed methods by showing the improvement of the bit error rate (BER) performance.

Analysis of transmission rate according to LoRaWAN communication distance (LoRaWAN Class B 통신 거리에 따른 전송율 분석)

  • Seo, Euiseong;Jang, Jongwook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.207-211
    • /
    • 2019
  • Research and development are underway to connect the network to all things in the world and to manage the objects through the Internet. The Internet of Things is expected to play an important role in building ecosystem of next generation mobile communication service. The most significant communication technology is LPWAN. In this paper, we analyze the performance according to each data transmission rate to reduce and manage resource waste by using many LPWAN nodes more efficiently in accordance with the demands of the times. The LPWAN communication technology used in this paper was designed based on LoRaWAN, a long-distance low-power wireless platform developed by Semtech, and analyzed by implementing a virtual IoT base using Network Simulator-3.

Analysis of IoT Security in Wi-Fi 6 (Wi-Fi 6 환경에서의 IoT 보안 분석)

  • Kim, HyunHo;Song, JongGun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.1
    • /
    • pp.38-44
    • /
    • 2021
  • Wi-Fi provides some low-power connection solutions that other Bluetooth cannot provide, and at the same time brings many benefits. First, there is a potentially higher data rate: it can reach 230mbps. Wi-Fi coverage is also wider than competitors, and its operating frequency is also 5GHz, which is much less congested than 2.4GHz. Finally, it also supports IP networks, which is important if you want to send data to the cloud without complexity. The 802.11ac standard of the previous generation still accounts for most shipments (80.9%) and revenue (76.2%). However, there is a limit to accepting IoT devices that will continue to increase significantly in the future. To solve this problem, the new Wi-Fi 6 standard is expected to be the solution (IEEE 802.11ax) which is quickly becoming the main driving force of the wireless local area network (WLAN) market. According to IDC market research analysts, in the first quarter of 2020, independent access points (APs) supported by Wi-Fi 6 accounted for 11.8% of shipments, but 21.8% of revenue. In this paper, we have compared and analyzed the IoT connectivity, QoS, and security requirements of devices using Wi-Fi 6 network.

Design of a Multi-Band Low Noise Amplifier for 3GPP LTE Applications in 90nm CMOS (3GPP LTE를 위한 다중대역 90nm CMOS 저잡음 증폭기의 설계)

  • Lee, Seong-Ku;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.100-105
    • /
    • 2010
  • A multi-band low noise amplifier (LNA) is designed in 90 nm RF CMOS process for 3GPP LTE (3rd Generation Partner Project Long Term Evolution) applications. The designed multi-band LNA covers the eight frequency bands between 1.85 and 2.8 GHz. A tunable input matching circuit is realized by adopting a switched capacitor array at the LNA input stage for providing optimum performances across the wide operating band. Current steering technique is adopted for the gain control in three steps. The performances of the LNA are verified through post-layout simulations (PLS). The LNA consumes 17 mA at 1.2 V supply voltage. It shows a power gain of 26 at the normal gain mode, and provides much lower gains of 0 and -6.7 in the bypass-I and -II modes, respectively. It achieves a noise figure of 1.78 dB and a IIP3 of -12.8 dBm over the entire band.

Current to Voltage Converter for Low power OFDM modem (저전력 OFDM 모뎀 구현을 위한 IVC설계)

  • Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.86-92
    • /
    • 2008
  • Othogonal Frequency Division Multiplexing(OFDM) has been taken notice of 4th generation communication method because it has a merit of high data rate(HDR). To realize HDR communication, The OFDM a s high efficient Fast-Fourier-Transform (FFT)/Inversion FFT (IFFT) processor. Currently OFDM is realized by Digital Signal Processor(DSP) but it consumes a lot of Power. Therefore, current-mode FFT LSI has been proposed for compensation of this demerit. In this paper, we propose IVC for current-mode FFT LSI. From the simulation result, the output value of IVC is more than 3V when the value of FFT Block output is more than $7.35{\mu}A$. The output value of IVC is lower than 0.5V when the value of FFT Block output is lower than $0.97{\mu}A$. Designed IVC Low-power Current mode FFT LSI will contribute to the operation of current-mode FFT LSI and the development of next generation wireless communication systems.

  • PDF