• Title/Summary/Keyword: Wireless Controlled

Search Result 318, Processing Time 0.028 seconds

Modeling and Simulation of LEACH Protocol to Analyze DEVS Kernel-models in Sensor Networks

  • Nam, Su Man;Kim, Hwa Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.97-103
    • /
    • 2020
  • Wireless sensor networks collect and analyze sensing data in a variety of environments without human intervention. The sensor network changes its lifetime depending on routing protocols initially installed. In addition, it is difficult to modify the routing path during operating the network because sensors must consume a lot of energy resource. It is important to measure the network performance through simulation before building the sensor network into the real field. This paper proposes a WSN model for a low-energy adaptive clustering hierarchy protocol using DEVS kernel models. The proposed model is implemented with the sub models (i.e. broadcast model and controlled model) of the kernel model. Experimental results indicate that the broadcast model based WSN model showed lower CPU resource usage and higher message delivery than the broadcast model.

Real-Time Soil Humidity Monitoring Based on Sensor Network Using IoT (IoT를 사용한 센서 네트워크 기반의 실시간 토양 습도 모니터링)

  • Kim, Kyeong Heon;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.

A study on the wire reduction design and effect analysis for the train vehicle line (화물열차 분산제어시스템 개발에 관한 연구)

  • Lee, Kangmi;Lee, Jaeho;Yoon, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.778-784
    • /
    • 2017
  • In this paper, we propose wired and wireless distributed control systems designed to improve the freight logistics efficiency and verify wired distributed control systems. The verification condition required that 50 cargo vehicles be connected and operated to travel 21 km from Busan Sinhang station to Jinlye Station at an average speed of about 100km/h. The verification results show that the traction output and braking output of the control and controlled cars are dispersed by the wired distributed control system. The application is expected to more than double the efficiency of the logistics compared to the existing freight transportation system. However, in the case of the wired distributed control system, cable installation and maintenance are difficult, and it is impossible to change the combination of freight vehicles. Through the verification of the wired distributed control system, the applicability of distributed control systems to freight vehicles in Korea was confirmed and the system was further developed to produce a wireless distributed control system. In order to apply the wireless distributed control system, a propagation environment analysis for the ISM band was performed in the testbed and, as a result, it was confirmed that Wifi technology using the ISM band could be utilized. In order to use the WDP (Wireless Distributed Power) devices newly installed in the target vehicles, the transmission / reception control signals associated with the propulsion / braking / total control devices are defined. In the case of wireless distributed control systems, the convenience of their application and operation is guaranteed, but reliability and emergency safety measures should because of the dependence of the control of the vehicle on radio signals.

Model and Architecture of User-Defined Networks for Seamless Mobility Management in Diverse Wireless Environment (다양한 무선 환경에서 끊김 없는 이동성 관리를 위한 사용자 정의 네트워크 모델 및 구조)

  • Chun, Seung-Man;Nah, Jae-Wook;Lee, Seung-Mu;Choi, Jun-Hyuk;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.35-43
    • /
    • 2011
  • In this paper, we propose a novel architecture for seamless mobility management to provide users with seamless Internet connection when users roam between diverse wireless local area networks (WLANS) controlled by different management entities. There have been many researches in IETF, i.e., MIPv6, HMIPv6, and PMIPv6, to provide the mobility management. However, practically since wireless access points or access routers, which are managed by an individual manager or ISP managers, have different authentication scheme and the supported mobility management, the previous mobility management protocol developed by IETF can not guarantee the quality of service of application services as the mobile node performs the handover. To solve this drawback, we propose the mobility management scheme to provide QoS-guaranteed Internet services during the handover by configurating the wireless networks which is defined by users. More specifically, we present a model, the architecture and an algorithm for user-defined network (UDN) to provide the seamless Internet service. Finally, the performance of the proposed algorithm is evaluated by the network simulation tool.

A Common Platform for An Internal-Based Mobile Robot and Its Operator Terminal (인터넷 기반의 이동 로봇과 조종 단말기를 위한 공용 플랫폼 개발)

  • Kim, Chun-Soo;Jeon, Jae-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.252-254
    • /
    • 2004
  • This paper proposes a common platform for an internet-based mobile robot and its operator terminal. The common platform can reduce the cost and time to develop an internet-based robot and its operator terminal. The robot performs the role of a server and its terminal a client. One operator can use this terminal to make a command and this command can be sent to the robot through a wireless network. According to given commands, the robot moves a point and sends an image by using a camera or desired information by using other sensors. The information sent from the robot can help an operator to control the robot. The mobile robot consists of two modules, main module and motion module. Main module can exchange information with the operator terminal, process information, and send a command to motion module. Each application program for one internet-based mobile robot and its operator terminal will be developed to show that the same platform can be used for them. Also, it will be shown that the robot can be controlled easily by using its operator terminal.

  • PDF

Emergency Service Model for Networked Appliance in Home Network Environment (홈 네트워크 환경에서 정보가전 위기관리 서비스 모델)

  • Jean, Byoung-Chan;Kim, Hyeock-Jin
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.487-494
    • /
    • 2006
  • By development of the superhigh speed network and the Networked appliance, a home network environment was equipped quickly around the cyber apartment. The home network environment provides the abundant family life style which numerous appliance and tools are connected with the network. Recently it is caused by with appearance of the Networked appliance which is connected with the network, the service demand is augmented to hacking, wrong operation, breakdown, crime prevention in home automation, fire, and break-in. This paper planned and proposed the integrated crisis management service model in the environment of home network and Networked appliance. Namely, it classifies the Networked appliance crisis management service and it defines a crisis management message with the XML. The message where the crisis situation occurs is notified and controlled in wireless PDA or the hand phone or the specific authorization.

  • PDF

An Adaptive FEC Mechanism Using Crosslayer Approach to Enhance Quality of Video Transmission over 802.11 WLANs

  • Han, Long-Zhe;Park, Sung-Jun;Kang, Seung-Seok;In, Hoh-Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.341-357
    • /
    • 2010
  • Forward Error Correction (FEC) techniques have been adopted to overcome packet losses and to improve the quality of video delivery. The efficiency of the FEC has been significantly compromised, however, due to the characteristics of the wireless channel such as burst packet loss, channel fluctuation and lack of Quality of Service (QoS) support. We propose herein an Adaptive Cross-layer FEC mechanism (ACFEC) to enhance the quality of video streaming over 802.11 WLANs. Under the conventional approaches, FEC functions are implemented on the application layer, and required feedback information to calculate redundancy rates. Our proposed ACFEC mechanism, however, leverages the functionalities of different network layers. The Automatic Repeat reQuest (ARQ) function on the Media Access Control (MAC) layer can detect packet losses. Through cooperation with the User Datagram Protocol (UDP), the redundancy rates are adaptively controlled based on the packet loss information. The experiment results demonstrate that the ACFEC mechanism is able to adaptively adjust and control the redundancy rates and, thereby, to overcome both of temporary and persistent channel fluctuations. Consequently, the proposed mechanism, under various network conditions, performs better in recovery than the conventional methods, while generating a much less volume of redundant traffic.

An Efficient and Stable Congestion Control Scheme with Neighbor Feedback for Cluster Wireless Sensor Networks

  • Hu, Xi;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4342-4366
    • /
    • 2016
  • Congestion control in Cluster Wireless Sensor Networks (CWSNs) has drawn widespread attention and research interests. The increasing number of nodes and scale of networks cause more complex congestion control and management. Active Queue Management (AQM) is one of the major congestion control approaches in CWSNs, and Random Early Detection (RED) algorithm is commonly used to achieve high utilization in AQM. However, traditional RED algorithm depends exclusively on source-side control, which is insufficient to maintain efficiency and state stability. Specifically, when congestion occurs, deficiency of feedback will hinder the instability of the system. In this paper, we adopt the Additive-Increase Multiplicative-Decrease (AIMD) adjustment scheme and propose an improved RED algorithm by using neighbor feedback and scheduling scheme. The congestion control model is presented, which is a linear system with a non-linear feedback, and modeled by Lur'e type system. In the context of delayed Lur'e dynamical network, we adopt the concept of cluster synchronization and show that the congestion controlled system is able to achieve cluster synchronization. Sufficient conditions are derived by applying Lyapunov-Krasovskii functionals. Numerical examples are investigated to validate the effectiveness of the congestion control algorithm and the stability of the network.

Software Framework of Reconfigurable Data-oriented and Bi-directional Universal Remote Controller (동적 재구성이 가능한 데이터 지향적인 양방향 통합 리모컨의 소프트웨어 프레임워크)

  • Shin, Young-Sul;Lee, Woo-Jin
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.287-294
    • /
    • 2007
  • Most of existing integrated remote controllers can control only a group of home appliances made by the same manufacturer. And they cannot monitor the status of home appliances since they are based on analog RF(Radio Frequency) signal and operate in a uni-directional manner In this paper, we propose a software framework for a hi-directional universal remote controller(URC) which monitors the status of home appliances in Wireless Personal Area Network(WPAN). The URC can handle the control and status messages which consist of a command with related arguments. When a user wants to control any home appliance, the URC can be dynamically configured to its dedicated remote controller by generating a GUI according to its profile. Any other devices which have a capacity for understanding the profile from the controlled devices can play the same role of the URC.

Vibration-based identification of rotating blades using Rodrigues' rotation formula from a 3-D measurement

  • Loh, Chin-Hsiung;Huang, Yu-Ting;Hsiung, Wan-Ying;Yang, Yuan-Sen;Loh, Kenneth J.
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.677-691
    • /
    • 2015
  • In this study, the geometrical setup of a turbine blade is tracked. A research-scale rotating turbine blade system is setup with a single 3-axes accelerometer mounted on one of the blades. The turbine system is rotated by a controlled motor. The tilt and rolling angles of the rotating blade under operating conditions are determined from the response measurement of the single accelerometer. Data acquisition is achieved using a prototype wireless sensing system. First, the Rodrigues' rotation formula and an optimization algorithm are used to track the blade rolling angle and pitching angles of the turbine blade system. In addition, the blade flapwise natural frequency is identified by removing the rotation-related response induced by gravity and centrifuge force. To verify the result of calculations, a covariance-driven stochastic subspace identification method (SSI-COV) is applied to the vibration measurements of the blades to determine the system natural frequencies. It is thus proven that by using a single sensor and through a series of coordinate transformations and the Rodrigues' rotation formula, the geometrical setup of the blade can be tracked and the blade flapwise vibration frequency can be determined successfully.