• Title/Summary/Keyword: Winding method of transformer

Search Result 149, Processing Time 0.029 seconds

New Double-Connected Multi-Step Inverter for High Power Motor Drive Applications (대용량 모터드라이브 적용을 위한 새로운 이중접속방식의 멀티스텝 인버터)

  • Yang, Seung-Uk;Choe, Gyu-Ha;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.209-215
    • /
    • 2006
  • Now, in this paper, going to present you with an Idea related to a new inverter of multi-step voltage source, that Is, the double-connected 12-step inverter with an auxiliary circuit. It possibly can be 24-step inverter with 3-phase voltage source which will enable us make full application even to medium and high power-level Motor drive, UPS, STATCOM, SVC, etc. in which the PWM method could not be employed. 24-step operation can be obtained from the link between the existing 12-step inverter and the additional auxiliary circuit in which the transformer of auxiliary circuit generates ripple voltage delivered to the inverter. Through a lot of experiments and simulations, (from which the validity of this scheme is confirmed,) we came to the conclusion that the increase of the primary winding number on transformer by 2N(N=1,2,3....) leads to the 12M-step(M=2,3,4...) inverter. The validity of the proposed scheme is confirmed by the simulated and experimental results.

Characteristics of Hybrid-Type SFCL by the Number of Secondary Windings with YBCO Films (2차회로의 수에 따른 하이브리드형 초전도 한류기의 동작 특성)

  • Cho Yong-Sun;Choi Hyo-Sang;Park Hyoung-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.2
    • /
    • pp.62-66
    • /
    • 2006
  • We investigated the characteristics of the hybrid-type superconducting fault current limiter (SFCL) by the number of secondary windings. The SFCL consists of a transformer, which has a primary winding and several secondary windings with serially connected $YB_{a2}Cu_{3}O_{7}$ films. In order to increase the capacity. of the SFCL, the serial connection between each current limiting unit is necessary. Resistive-type SFCL has a difficulty in quenching simultaneously between the units due to slight differences of their critical current densities. The hybrid-type SFCL could achieve the simultaneous quenching through the electrical isolation and the mutual flux linkage among the units. We confirmed that the capacity of the SFCL could be increased effectively through the simultaneous quenching among the units. In addition, the power burden of the system could be reduced by adjusting the number of secondary windings. We will investigate the method to increase the capacity through serial and Parallel connections among current limiting units.

Efficiency Optimization with a Novel Magnetic-Circuit Model for Inductive Power Transfer in EVs

  • Tang, Yunyu;Zhu, Fan;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.309-322
    • /
    • 2018
  • The technology of inductive power transfer has been proved to be a promising solution in many applications especially in electric vehicle (EV) charging systems, due to its features of safety and convenience. However, loosely coupled transformers lead to the system efficiency not coming up to the expectation at the present time. Therefore, at first, the magnetic core losses are calculated with a novel magnetic-circuit model instead of the commonly used finite-element-method (FEM) simulations. The parameters in the model can be obtained with a one-time FEM simulation, which makes the calculation process expeditious. When compared with traditional methods, the model proposed in the paper is much less time-consuming and relatively accurate. These merits have been verified by experimental results. Furthermore, with the proposed loss calculation model, the system is optimized by parameter sweeping, such as the operating frequency and winding turns. Specifically, rather than a predesigned switching frequency, a more efficiency-optimized frequency for the series-parallel (SP) compensation topology is detected and a detailed investigation has been presented accordingly. The optimized system is capable of an efficiency that is greater than 93% at a coil separation distance of 200mm and coil dimensions of $600mm{\times}400mm$.

Winding Method of Flyback Transformer Considering Flux Distribution (자계분포를 고려한 플라이백 트랜스포머의 권선기법)

  • Yoon Shin-Yong;CHOI G. S.;Han K. H.;Kim N. H.;Maen I. J.;Baek S. H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1281-1284
    • /
    • 2004
  • 본 논문에서는 백라이트로 사용되는 CCFL의 점등을 위한 인버터를 연구대상으로 하였다. CCFL의 고전압 점등을 위해 다층 longitudinal 모드구조의 압전세라믹을 이용하였다. CCFL의 점등은 공진특성을 이용하는 것이므로 기계적인 공진주파수와 스위칭 주파수가 거의 일치할 수 있도록 L-C공진회로를 설계하였다. 인버터의 토플로지는 플라이백 기법을 적용하였으며 이를 위해서 권선의 배치에 의해 손실을 고려한 고주파 트랜스포머를 설계하였다. 시뮬레이션 및 실험 결과를 통하여 이에 대한 타당성을 입증하였다. 이로부터 공진주파수 48[kHz], 점등전압 600[V] 및 점등전류 6[mA] 얻었으며, 적용된 CCFL 램프사양은 관직경 $2.2{\phi}$와 관길이 314[mm], 압전세라믹 $43{\times}5.5{\times}2.3[mm]$를 이용하였다.

  • PDF

A New Switching Method to Improve Energy Transfer Efficiency of Active Cell Balancing Circuits Using Multi-winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로의 에너지 전달 효율을 높이기 위한 새로운 스위칭 방식)

  • Lee, Sang-Jung;Kim, Myoungho;Baek, Ju-Won;Kang, Dae-Wook;Jung, Jee-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.165-167
    • /
    • 2018
  • 본 논문은 다권선 변압기를 이용한 능동 셀 밸런싱 회로의 에너지 전달 효율을 향상시킬 수 있는 스위칭 방식을 제안한다. 다권선 변압기를 이용한 밸런싱 회로는 셀 당 하나의 스위치가 사용되며, 하나의 변압기 권선을 두 개의 셀이 공유하는 구조를 가져 다른 능동 셀 밸런싱 회로보다 소량의 능동 소자 및 수동 소자가 사용되는 장점을 갖는다. 이 밸런싱 회로는 직렬 셀 전압의 분포에 따라 에너지를 공급하는 소스 셀과 에너지를 받는 목표 셀을 선택하여 벅-부스트 및 플라이백 방식으로 동작한다. 하지만, 플라이백 동작에서 기존의 스위칭 방식을 사용할 경우, 변압기의 커플링 계수의 영향으로 인해 밸런싱 과정 중 비-목표 셀로 전달되는 에너지가 발생하게 된다. 이는 에너지 전달 효율을 감소시켜 셀 밸런싱 과정 중 새로운 셀 불균형 현상을 초래한다. 본 논문에서는 플라이백 동작에서 변압기의 커플링 영향을 최소화하여 셀 밸런싱을 효과적으로 수행할 수 있는 스위칭 방식을 제안하였다. 제안한 스위칭 방식의 성능은 1 W급 시작품을 이용한 실험을 통하여 검증되었다.

  • PDF

Transformer Winding Method to Improve the Current Balance of Output Rectifiers in LLC Resonant Converters (LLC 공진형 컨버터에서 출력 정류단 전류의 분포 균등성 향상을 위한 변압기 권선방법)

  • Jung, Jee-Hoon;Na, Tae-Kwon;Choi, Jong-Moon;Kwon, Joong-Gi
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.475-477
    • /
    • 2008
  • LLC 공진형 컨버터는 주스위치의 ZVS와 출력정류단의 ZCS가 가능하여 높은 효율로 동작하고, 출력단에 인덕터를 사용하지 않는 장점으로 널리 사용되고 있다. LLC 공진형 컨버터의 출력단 구조는 크게 변압기의 센터탭(Center Tap) 방식과 출력정류기를 Full Bridge로 구성하는 방식이 있는데, 정류기 손실과 재료비 측면을 고려하면 센터탭 방식이 유리하다. 그러나 센터탭으로 분리된 2차측 권선간의 누설 인덕턴스 차이로 인하여 컨버터 동작의 반주기 마다 공진이 어긋날 수 있고, 출력정류단에 흐르는 전류의 RMS 크기도 매 반주기마다 달라져서 동작효율의 감소를 가져올 수 있다. 따라서 본 논문에서는 LLC 공진형 컨버터의 수학적 모델로부터 2차측 권선의 누설 인덕턴스 차이의 영향을 예측하고, 그 영향을 최소화할 수 있는 권선법을 제안한다. 또한 400W급 컨버터에서 실험을 통하여 제안한 방식을 실증하고자 한다.

  • PDF

A Study on the Output Voltage Characteristic of Switched Trans Z-Source Inverter (스위치드 변압기 Z-소스 인버터의 출력전압 특성에 관한 연구)

  • Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • This paper proposes the switched trans Z-source inverter(STZSI) which combined the characteristics of the trans Z-source inverter(TZSI) and the switched inductor Z-source inverter(SLZSI). The proposed STZSI has the same performance compared with the SLZSI which is improved the voltage boost performance of the conventional typical X-shaped ZSI, and it has advantage that circuit structure of Z-impedance network is more simple. And, in order to step up the voltage boost factor under the condition of the same duty ratio, unlike the SLZSI adding the inductors and diodes, the proposed method is dune by changing the turn ratio of trans primary winding of Z-impedance network. To confirm the validity of the proposed method, PSIM simulation and a DSP(TMS320F28335) based experiment were performed using trans with turn ratio 1 and 2 under the condition of the input DC voltage VI=50V, duty ratio D=0.1 and D=0.15. As a result, under the same input/ouput condition, the inverter arm voltage stress of the proposed method is reduced to about 15%-22% as compared with typical X-shaped ZSI, and the elements in Z-impedance network of the proposed method is reduced as compared with the SLZSI.

Development of Asynchronous Blocking Algorithm through Asynchronous Case Study of Steam Turbine Generator (스팀터빈 발전기 비동기 투입 사례연구를 통한 비동기 방지 알고리즘 개발)

  • Lee, Jong-Hweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1542-1547
    • /
    • 2012
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. When calculation method of protection settings and logic for protection of generator asynchronization will be recommended, a distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection, this paper describes an improved backup protection coordination scheme using a new logic that will be suggested.

A Study on Protection of Generator Asynchronization by Impedance Relaying (임피던스 계전기를 이용한 발전기 비동기 투입 보호 연구)

  • Lee, Jong-Hweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2000-2006
    • /
    • 2011
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. Where calculation method of protection settings and Logic for Protection of Generator Asynchronization will be recommended, A distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, Zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection this paper describes an improved backup protection coordination scheme using a new Logic that will be suggested.