• Title/Summary/Keyword: Wind-Resistant Design

Search Result 80, Processing Time 0.045 seconds

Study on wind-induced vibration response of Jiayuguan wooden building

  • Teng Y. Xue;Hong B. Liu;Ting Zhou;Xin C. Chen;Xiang Zhang;Zhi P. Zou
    • Wind and Structures
    • /
    • 제37권3호
    • /
    • pp.245-254
    • /
    • 2023
  • In this paper, the wind-induced response of Jiayuguan wooden building (world cultural heritage) in Northwest China was studied. ANSYS finite element software was used to establish four kinds of building models under different working conditions and carry out modal analysis. The simulation results were compared with the field dynamic test results, obtaining the model which reflects the real vibration characteristics of the wooden tower. Time history data of fluctuating wind speed was obtained by MATLAB programming. Time domain method and ANSYS were used to analyze the wind-induced vibration response time history of Jiayuguan wooden building, obtaining the displacement time history curve of the structure. It was suggested that the wind-induced vibration coefficient of Jiayuguan wooden building is 1.76. Through analysis of the performance of the building under equivalent static wind load, the maximum displacement occurs in the three-story wall, gold column and the whole roof area, and the maximum displacement of the building is 5.39 cm. The ratio of the maximum stress value to the allowable value of wood tensile strength is 45 %. The research results can provide reference for the wind resistant design and protection of ancient buildings with similar structure to Jiayuguan wooden tower.

신뢰성에 기초한 송전철탑의 내풍설계기준 (Reliability-Based Wind-Resistant Design Criteria of Transmission Towers)

  • 조효남;신재철;이승재
    • 대한토목학회논문집
    • /
    • 제14권5호
    • /
    • pp.1043-1053
    • /
    • 1994
  • 본 논문에서는 태풍이나 착빙설 등 기상관련 하중을 받는 송전철탑의 실용적이고 합리적인 설계를 위하여 신뢰성에 기초한 하중저항계수설계기준(Load and Resistance Factor Design : LRFD)을 개발하였다. 이때, 설계풍하중 및 착빙하중은 송전철탑에 가해지는 풍속과 착빙설에 대한 우리나라의 가용한 통계자료를 바탕으로 MCS(Monte Carlo Simulation) 기법을 사용하여 추정하였다. 시설 송전철탑의 요소 및 체계신뢰성해석에는 AFOSM(Advanced First Order Second Moment)신뢰성방법과 IST(Importance Sampling Technique)를 사용하였다. LRFD 설계기준의 하중 및 저항계수는 합리적으로 선정된 목표 신뢰도를 기초로 AFOSM과 code 최적화기법을 사용하여 도출하였다.

  • PDF

Observational analysis of wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015)

  • Lin Xue;Ying Li;Lili Song
    • Wind and Structures
    • /
    • 제37권4호
    • /
    • pp.315-329
    • /
    • 2023
  • We investigated the wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015) based on observations from wind towers in the coastal areas of Guandong province. Typhoon Mujigae made landfall in this region from 01:00 UTC to 10:00 UTC on October 4, 2015. In the region influenced by the eyewall of the tropical cyclone, the horizontal wind speed was characterized by a double peak, the wind direction changed by >180°, the vertical wind speed increased by three to four times, and the angle of attack increased significantly to a maximum of 7°, exceeding the recommended values in current design criteria. The vertical wind profile may not conform to a power law distribution in the near-surface layer in the region impacted by the eyewall and spiral rainband. The gust factors were relatively dispersed when the horizontal wind speed was small and tended to a smaller value and became more stable with an increase in the horizontal wind speed. The variation in the gust factors was the combined result of the height, wind direction, and circulation systems of the tropical cyclone. The turbulence intensity and the downwind turbulence energy spectrum both increased notably in the eyewall and spiral rainband and no longer satisfied the assumption of isotropy in the inertial subrange and the -5/3 law. This result was more significant in the eyewall area than in the spiral rainband. These results provide a reference for forecasting tropical cyclones, wind-resistant design, and hazard prevention in coastal areas of China to reduce the damage caused by high winds induced by tropical cyclones.

송전철탑의 내진성능평가 및 설계 풍하중과 지진하중의 비교 연구 (Seismic Performance Evaluation and a Comparative Study on the Design Wind and Earthquake Loads for Power Transmission Towers)

  • 황경민;전낙현;장정범;연관희;김태균
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.75-81
    • /
    • 2019
  • 본 연구에서는 최근 정부에서 제시한 표준설계 응답스펙트럼을 이용하여 송전용량, 높이 및 구조타입 등 다양한 변수를 고려한 송전철탑 24기를 선정하여 내진성능평가를 수행하였다. 또한, 정부에서 요구한 내진기준 상향 시 철탑의 설계에 미치는 영향을 검토하기 위하여, 현 설계 풍하중 및 개정 지진하중에 의해 발생되는 응력 및 단면력의 크기를 비교해 보았다. 내진성능평가 결과 대상 철탑들은 0.31~0.91g의 내진성능을 보유하고 있는 것으로 나타나, 2,400년 재현주기의 내진특등급 수준을 만족하였으며 내진안전성을 확보하고 있는 것으로 나타났다. 또한, 철탑의 지진에 의한 단면력은 풍하중에 의한 값의 33~82.5%로 나타나, 상향된 내진기준에서도 설계 풍하중이 지진하중보다 지배적임을 확인하였다.

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • 제32권5호
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

Enhanced data-driven simulation of non-stationary winds using DPOD based coherence matrix decomposition

  • Liyuan Cao;Jiahao Lu;Chunxiang Li
    • Wind and Structures
    • /
    • 제39권2호
    • /
    • pp.125-140
    • /
    • 2024
  • The simulation of non-stationary wind velocity is particularly crucial for the wind resistant design of slender structures. Recently, some data-driven simulation methods have received much attention due to their straightforwardness. However, as the number of simulation points increases, it will face efficiency issues. Under such a background, in this paper, a time-varying coherence matrix decomposition method based on Diagonal Proper Orthogonal Decomposition (DPOD) interpolation is proposed for the data-driven simulation of non-stationary wind velocity based on S-transform (ST). Its core idea is to use coherence matrix decomposition instead of the decomposition of the measured time-frequency power spectrum matrix based on ST. The decomposition result of the time-varying coherence matrix is relatively smooth, so DPOD interpolation can be introduced to accelerate its decomposition, and the DPOD interpolation technology is extended to the simulation based on measured wind velocity. The numerical experiment has shown that the reconstruction results of coherence matrix interpolation are consistent with the target values, and the interpolation calculation efficiency is higher than that of the coherence matrix time-frequency interpolation method and the coherence matrix POD interpolation method. Compared to existing data-driven simulation methods, it addresses the efficiency issue in simulations where the number of Cholesky decompositions increases with the increase of simulation points, significantly enhancing the efficiency of simulating multivariate non-stationary wind velocities. Meanwhile, the simulation data preserved the time-frequency characteristics of the measured wind velocity well.

태풍 시뮬레이션을 통한 한반도 극한풍속 추정 (Estimation of Extreme Wind Speeds in Korean Peninsula using Typhoon Monte Carlo Simulation)

  • 이승수;김가영
    • 한국전산구조공학회논문집
    • /
    • 제29권2호
    • /
    • pp.141-148
    • /
    • 2016
  • 국내 서해대교, 인천대교와 같은 장대교량은 대부분 빈번하게 태풍에 의해 영향을 받는 해안에 위치하였으며, 교량의 길이가 긴 만큼 풍하중에 의한 영향이 다른 하중에 비해 상대적으로 크기 때문에 내풍 안정성을 확보하기 위해 정확한 설계풍속을 산정하는 것이 매우 중요하다. 본 연구에서는 태풍의 기후학적 특성 인자로 중심기압깊이, 태풍이동속도, 태풍이동방향, 최단접근거리를 결정하였으며, 태풍의 기후학적 특성들의 확률 분포를 추정하고, 바람장 모형과 중심기압상승 모형을 적용하여 몬테카를로 시뮬레이션을 실시하였다. 분석결과, 대체적으로 제주도와 남해안 지역의 재현기간 풍속이 크게 나오며 고위도로 갈수록 작아지는 특징을 나타냈다. 이와 같은 특징이 나타난 가장 큰 원인은 고위도 분석지점 표본 태풍의 중심기압이 저위도 분석지점 표본 태풍의 중심기압보다 높기 때문으로 판단되며, 또한 우리나라에 해상에서 육지로 이동하면서 쇠퇴기를 겪어 점차 약해지기 때문인 것으로 분석되었다. 또한, 시뮬레이션 결과를 도로교 설계기준 100년 재현기간 풍속(10분 평균, 지상 10m, 지표조도 II)과 비교한 결과, 태풍시뮬레이션의 결과가 낮게 나타났으며, 이러한 점을 볼 때 도로교 설계기준의 기본 풍속이 높게 산정되어 있다고 판단되며, 기상자료 분석과 같은 추가적인 연구를 통해 기본풍속 조정에 대한 연구가 수행 되어야 할 것으로 사료된다.

Wind-induced mechanical energy analyses for a super high-rise and long-span transmission tower-line system

  • Zhao, Shuang;Yan, Zhitao;Savory, Eric;Zhang, Bin
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.185-197
    • /
    • 2022
  • This study aimed to analyze the wind-induced mechanical energy (WME) of a proposed super high-rise and long-span transmission tower-line system (SHLTTS), which, in 2021, is the tallest tower-line system with the longest span. Anew index - the WME, accounting for the wind-induced vibration behavior of the whole system rather than the local part, was first proposed. The occurrence of the maximum WME for a transmission tower, with or without conductors, under synoptic winds, was analyzed, and the corresponding formulae were derived based on stochastic vibration theory. Some calculation data, such as the drag coefficient, dynamic parameters, windshielding areas, mass, calculation point coordinates, mode shape and influence function, derived from wind tunnel testing on reducedscale models and finite element software were used in calculating the maximum WME of the transmission tower under three cases. Then, the influence of conductors, wind speed, gradient wind height and wind yaw angle on WME components and the energy transfer relationship between substructures (transmission tower and conductor) were analyzed. The study showed that the presence of conductors increases the WME of transmission towers and changes the proportion of the mean component (MC), background component (BC) and resonant component (RC) for WME; The RC of WME is more susceptible to the wind speed change. Affected by the gradient wind height, the WME components decrease. With the RC decreasing the fastest and the MC decreasing the slowest; The WME reaches the its maximum value at the wind yaw angle of 30°. Due to the influence of three factors, namely: the long span of the conductors, the gradient wind height and the complex geometrical profile, it is important that the tower-line coupling effect, the potential for fatigue damage and the most unfavorable wind yaw angle should be given particular attention in the wind-resistant design of SHLTTSs

Non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers: A case study

  • Hongtao, Shen;Weicheng, Hu;Qingshan, Yang;Fucheng, Yang;Kunpeng, Guo;Tong, Zhou;Guowei, Qian;Qinggen, Xu;Ziting, Yuan
    • Wind and Structures
    • /
    • 제35권6호
    • /
    • pp.419-430
    • /
    • 2022
  • In wind-resistant designs, wind velocity is assumed to be a Gaussian process; however, local complex topography may result in strong non-Gaussian wind features. This study investigates the non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers by the large eddy simulation (LES) model, and the turbulent inlet of LES is generated by the consistent discretizing random flow generation (CDRFG) method. The performance of LES is validated by two different complex terrains in Changsha and Mianyang, China, and the results are compared with wind tunnel tests and onsite measurements, respectively. Furthermore, the non-Gaussian parameters, such as skewness, kurtosis, probability curves, and gust factors, are analyzed in-depth. The results show that the LES method is in good agreement with both mean and turbulent wind fields from wind tunnel tests and onsite measurements. Wind fields in complex terrain mostly exhibit a left-skewed Gaussian process, and it changes from a softening Gaussian process to a hardening Gaussian process as the height increases. A reduction in the gust factors of about 2.0%-15.0% can be found by taking into account the non-Gaussian features, except for a 4.4% increase near the ground in steep terrain. This study can provide a reference for the assessment of extreme wind loads on structures in complex terrain.

Amplitude Dependency of Damping in Buildings and Critical Tip Drift Ratio

  • Tamura, Yukio
    • 국제초고층학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-13
    • /
    • 2012
  • The importance of appropriate use of damping evaluation techniques and points to note for accurate evaluation of damping are first discussed. Then, the variation of damping ratio with amplitude is discussed, especially in the amplitude range relevant to wind-resistant design of buildings, i.e. within the elastic limit. The general belief is that damping increases with amplitude, but it is emphasized that there is no evidence of increasing damping ratio in the very high amplitude range within the elastic limit of main frames, unless there is damage to secondary members or architectural finishings. The damping ratio rather decreases with amplitude from a certain tip drift ratio defined as "critical tip drift ratio," after all friction surfaces between primary/structural and secondary/non-structural members have been mobilized.