DOI QR코드

DOI QR Code

Non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers: A case study

  • Hongtao, Shen (PowerChina Sichuan Electric Power Engineering Co., Ltd.) ;
  • Weicheng, Hu (Institute for Smart Transportation Infrasture, School of Transportation Engineering, East China Jiaotong University) ;
  • Qingshan, Yang (Chongqing Key Laboratory of Wind Engineering and Wind Energy Utilization, School of Civil Engineering, Chongqing University) ;
  • Fucheng, Yang (PowerChina Sichuan Electric Power Engineering Co., Ltd.) ;
  • Kunpeng, Guo (Chongqing Key Laboratory of Wind Engineering and Wind Energy Utilization, School of Civil Engineering, Chongqing University) ;
  • Tong, Zhou (Department of Civil Engineering, School of Engineering, The University of Tokyo) ;
  • Guowei, Qian (Department of Civil Engineering, School of Engineering, The University of Tokyo) ;
  • Qinggen, Xu (Jiangxi Provincial Architectural Design and Research Institute Group Co., Ltd.) ;
  • Ziting, Yuan (School of Civil Engineering and Architecture, Nanchang Jiaotong Institute)
  • Received : 2022.08.05
  • Accepted : 2022.12.13
  • Published : 2022.12.25

Abstract

In wind-resistant designs, wind velocity is assumed to be a Gaussian process; however, local complex topography may result in strong non-Gaussian wind features. This study investigates the non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers by the large eddy simulation (LES) model, and the turbulent inlet of LES is generated by the consistent discretizing random flow generation (CDRFG) method. The performance of LES is validated by two different complex terrains in Changsha and Mianyang, China, and the results are compared with wind tunnel tests and onsite measurements, respectively. Furthermore, the non-Gaussian parameters, such as skewness, kurtosis, probability curves, and gust factors, are analyzed in-depth. The results show that the LES method is in good agreement with both mean and turbulent wind fields from wind tunnel tests and onsite measurements. Wind fields in complex terrain mostly exhibit a left-skewed Gaussian process, and it changes from a softening Gaussian process to a hardening Gaussian process as the height increases. A reduction in the gust factors of about 2.0%-15.0% can be found by taking into account the non-Gaussian features, except for a 4.4% increase near the ground in steep terrain. This study can provide a reference for the assessment of extreme wind loads on structures in complex terrain.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. 52208479), the China Postdoctoral Science Foundation project (Grant No. 2022M720577), the Postdoctoral Research Project of Zhejiang Province (Grant No. ZJ2022037), the Science and Technology Research Project of Jiangxi Provincial Education Department (Grant No. GJJ210657), and the Foundation of Humanities and Social Science Universities of Jiangxi Province (Grant No. GL21225).

References

  1. Aboshosha, H., Elshaer, A., Bitsuamlak, G.T. and El Damatty, A. (2015), "Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings", J. Wind Eng. Ind. Aerod., 142, 198-216. https://doi.org/10.1016/j.jweia.2015.04.004.
  2. Balderrama, J.A., Masters, F.J. and Gurley, K.R. (2012), "Peak factor estimation in hurricane surface winds", J. Wind Eng. Ind. Aerod., 102, 1-13. https://doi.org/10.1016/j.jweia.2011.12.003.
  3. Batt, R., Gant, S., Lacome, J.M., Truchot, B. and Tucker, H. (2018), "CFD modelling of dispersion in neutrally and stably-stratified atmospheric boundary layers: results for Prairie Grass and Thorney Island", Int. J. Environ. Pollut., 63(1-2), 1-18. https://doi.org/10.1504/IJEP.2018.093026.
  4. Cao, S.Y. and Tamura, T. (2006), "Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill", J. Wind Eng. Ind. Aerod., 94(1), 1-19. https://doi.org/10.1016/j.jweia.2005.10.001.
  5. Cao, S.Y. and Tamura, T. (2007), "Effects of roughness blocks on atmospheric boundary layer flow over a two-dimensional low hill with/without sudden roughness change", J. Wind Eng. Ind. Aerod., 95(8), 679-695. https://doi.org/10.1016/j.jweia.2007.01.002.
  6. Cao, S.Y., Wang, T., Ge, Y.J. and Tamura, Y. (2012), "Numerical study on turbulent boundary layers over two-dimensional hills - Effects of surface roughness and slope.", J. Wind Eng. Ind. Aerod., 104-106, 342-349. https://doi.org/10.1016/j.jweia.2012.02.022.
  7. Dai, G., Xu, Z., Chen, Y.F., Flay, R.G.J. and Rao, H. (2021), "Analysis of the wind field characteristics induced by the 2019 Typhoon Bailu for the high-speed railway bridge crossing China's southeast bay", J. Wind Eng. Ind. Aerod., 211, 104557. https://doi.org/10.1016/j.jweia.2021.104557.
  8. Davenport, A.G. (1964), "Note on the distribution of the largest value of a random function with application to gust loading", ICE Proceedings, 187-196. https://doi.org/10.1680/iicep.1964.10112.
  9. Fang, G., Zhao, L., Cao, S., Ge, Y. and Li, K. (2019), "Gust characteristics of near-ground typhoon winds", J. Wind Eng. Ind. Aerod., 188, 323-337. https://doi.org/10.1016/j.jweia.2019.03.008.
  10. Finnigan, J., Ayotte, K., Harman, I., Katul, G., Oldroyd, H., Patton, E., Poggi, D., Ross, A. and Taylor, P. (2020), "Boundary-layer flow over complex topography", Bound.- Lay. Meteorol., 177(2), 247-313. https://doi.org/10.1007/s10546-020-00564-3.
  11. Fisher, B.A. (1930), "The moments of the distribution for normal samples of measures of departure from normality", Proc. Roy. Soc. A, 30(1929), 16-28. https://doi.org/10.1098/rspa.1930.0185.
  12. Hu, W., Yang, Q. and Zhang, J. (2018), "Comparative study on wind topographic factor of hilly terrain by different codes and standards", Eng. Mech., 35(10), 203-211. https://doi.org/10.6052/j.issn.1000-4750.2017.11.0897.
  13. Hu, W., Yang, Q., Chen, H.P., Guo, K., Zhou, T., Liu, M., Zhang, J. and Yuan, Z. (2022), "A novel approach for wind farm micro-siting in complex terrain based on an improved genetic algorithm", Energy, 251, 123970. https://doi.org/10.1016/j.energy.2022.123970.
  14. Hu, W., Yang, Q., Chen, H.P., Yuan, Z. and Zhang, J. (2021), "Wind field characteristics over hilly and complex terrain in turbulent boundary layers", Energy, 224, 120070. https://doi.org/10.1016/j.energy.2021.120070.
  15. Hu, W., Yang, Q., Yan, B. and Zhang, J. (2019), "LES study of turbulent boundary layers over three-dimensional hills", Eng. Mech., 36(4), 72-79. https://doi.org/10.6052/j.issn.1000-4750.2018.03.0138.
  16. Huang, S.H., Li, Q.S. and Wu, J.R. (2010), "A general inflow turbulence generator for large eddy simulation", J. Wind Eng. Ind. Aerod., 98(10-11), 600-617. https://doi.org/10.1016/j.jweia.2010.06.002.
  17. Huang, W. and Zhang, X. (2019), "Wind field simulation over complex terrain under different inflow wind directions", Wind Struct., 28(4), 239-253. https://doi.org/10.12989/was.2019.28.4.239.
  18. Ishihara, T., Fujino, Y. and Hibi, K. (2001), "A wind tunnel study of separated flow over a two-dimensional ridge and a circular hill", J. Wind Eng. Ind. Aerod., 89, 573-576.
  19. Ishihara, T., Hibi, K. and Oikawa, S. (1999), "A wind tunnel study of turbulent flow over a three-dimensional steep hill", J. Wind Eng. Ind. Aerod., 83(1-3), 95-107. https://doi.org/10.1016/S0167-6105(99)00064-1.
  20. Kadivar, M., Tormey, D. and McGranaghan, G. (2021), "A review on turbulent flow over rough surfaces: Fundamentals and theories", Int. J. Thermofluids., 10, 100077. https://doi.org/10.1016/j.ijft.2021.100077.
  21. Kareem, A. and Zhao, J. (1994), "Analysis of non-Gaussian surge response of tension leg platforms under wind loads", J. Offshore Mech. Arct., 116, 137-144. https://doi.org/10.1115/1.2920142.
  22. Khaled, M.F., Aly, A.M. and Elshaer, A. (2021), "Computational efficiency of CFD modeling for building engineering: An empty domain study", J. Build. Eng., 42, 102792. https://doi.org/10.1016/j.jobe.2021.102792.
  23. Kwon, D.K. and Kareem, A. (2011), "Peak factors for non-Gaussian load effects revisited", J. Struct. Eng.-Reston, 137(12), 1611. https://doi.org/10.13140/RG.2.2.26049.15207.
  24. Lee, M., Lee, S.H., Hur, N. and Choi, C.K. (2010), "A numerical simulation of flow field in a wind farm on complex terrain", Wind Struct., 13(4), 375-383. https://doi.org/10.12989/was.2010.13.4.375.
  25. Li, C., Wang, J. and Xiao, Y. (2016), "A new recycling-rescaling method for large eddy simulation of turbulent atmospheric boundary layer", Proceedings of the 2016 World Congress on Advances in Civil, Environmental and Materials Research, Jeju Island, Korea.
  26. Li, L., Zheng, B., Xiao, Y. and Song, L. (2015), "Study on gust factor in typhoon winds considering influence of non-gaussian features Li", China Civil Eng. J., 48(5), 44-50. https://doi.org/10.15951/j.tmgcxb.2015.05.005.
  27. Liu, Z.Q., Diao, Z. and Ishihara, T. (2019), "Study of the flow fields over simplified topographies with different roughness conditions using large eddy simulations", Renew. Energ., 136, 968-992. https://doi.org/10.1016/j.renene.2019.01.032.
  28. Load Code for the Design of Building Structures: GB 50009-2012. (2012).
  29. Midjiyawa, Z., Cheynet, E., Reuder, J., Agustsson, H. and Kvamsdal, T. (2021), "Potential and challenges of wind measurements using met-masts in complex topography for bridge design: Part I - Integral flow characteristics", J. Wind Eng. Ind. Aerod., 211, 104584. https://doi.org/10.1016/j.jweia.2021.104584.
  30. Smagorinsky, J.S. (1963), "General circulation experiments with the primitive equations", Mon. Weather Rev., 91(3), 99-164. https://doi.org/10.1175/15200493(1963)091%3C0099:GCEWTP%3E2.3.CO;2.
  31. Thordal, M.S., Bennetsen, J.C. and Koss, H.H.H. (2019), "Review for practical application of CFD for the determination of wind load on high-rise buildings", J. Wind Eng. Ind. Aerod., 186, 155-168. https://doi.org/10.1016/j.jweia.2018.12.019.
  32. Wang, X., Li, H., Chen, Z., Qian, Y., Wang, Y. and Peng, X. (2019), "Field measurement of near-surface typhoon characteristics using a smart monitoring system on a long-span arch bridge site", Adv. Struct. Eng., 22(8), 1977-1987. https://doi.org/10.1177/1369433219830510.
  33. Weng, W.S., Taylor, P.A. and Walmsley, J.L. (2000), "Guidelines for airflow over complex terrain: model developments", J. Wind Eng. Ind. Aerod., 86(2), 169-186. https://doi.org/10.1016/S0167-6105(00)00009-X.
  34. Winterstein, S.R. (1985), "Non-normal responses and fatigue damage", J. Eng. Mech., 111(10), 1291-1295. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1291).
  35. Winterstein, S.R., Ude, T.C. and Kleiven, G. (1994), "Springing and slow-drift responses: predicted extremes and fatigue vs. simulation", Proc., BOSS-94, 3, 1-15.
  36. Xu, F. and Zhou, J. (2017), "Review on the characteristics of wind fields at bridge site in mountainous area", J. Disaster Prevention Mitigation Eng., 37(3), 502-510. https://doi.org/10.13409/j.cnki.jdpme.2017.03.025.
  37. Yang, Q., Zhou, T., Yan, B., Van Phuc, P. and Hu, W. (2020), "LES study of turbulent flow fields over hilly terrains - Comparisons of inflow turbulence generation methods and SGS models", J. Wind Eng. Ind. Aerod., 204, 104230. https://doi.org/10.1016/j.jweia.2020.104230.
  38. Yoshikawa, M. and Tamura, T. (2012), "LES for wind load estimation by unstructured grid system", Proceedings of the 7th International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7).
  39. Yu, Y., Yang, Y. and Xie, Z. (2018), "A new inflow turbulence generator for large eddy simulation evaluation of wind effects on a standard high-rise building", Build. Environ., 138, 300-313. https://doi.org/10.1016/j.buildenv.2018.03.059.