• Title/Summary/Keyword: Wind extra

Search Result 52, Processing Time 0.026 seconds

Effects of different wind deflectors on wind loads for extra-large cooling towers

  • Ke, S.T.;Zhu, P.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.299-313
    • /
    • 2019
  • In order to examine the effects of different wind deflectors on the wind load distribution characteristics of extra-large cooling towers, a comparative study of the distribution characteristics of wind pressures on the surface of three large cooling towers with typical wind deflectors and one tower without wind deflector was conducted using wind tunnel tests. These characteristics include aerodynamic parameters such as mean wind pressures, fluctuating wind pressures, peak factors, correlation coefficients, extreme wind pressures, drag coefficients and vorticity distribution. Then distribution regularities of different wind deflectors on global and local wind pressure of extra-large cooling towers was extracted, and finally the fitting formula of extreme wind pressure of the cooling towers with different wind deflectors was provided. The results showed that the large eddy simulation (LES) method used in this article could be used to accurately simulate wind loads of such extra-large cooling towers. The three typical wind deflectors could effectively reduce the average wind pressure of the negative pressure extreme regions in the central part of the tower, and were also effective in reducing the root of the variance of the fluctuating wind pressure in the upper-middle part of the windward side of the tower, with the curved air deflector showing particularly. All the different wind deflectors effectively reduced the wind pressure extremes of the middle and lower regions of the windward side of the tower and of the negative pressure extremes region, with the best effect occurring in the curved wind deflector. After the wind deflectors were installed the drag coefficient values of each layer of the middle and lower parts of the tower were significantly higher than that without wind deflector, but the effect on the drag coefficients of layers above the throat was weak. The peak factors for the windward side, the side and leeward side of the extra-large cooling towers with different wind deflectors were set as 3.29, 3.41 and 3.50, respectively.

Meteorological events causing extreme winds in Brazil

  • Loredo-Souza, Acir M.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.177-188
    • /
    • 2012
  • The meteorological events that cause most strong winds in Brazil are extra-tropical cyclones, downbursts and tornadoes. However, one hurricane formed off the coastline of southern Brazil in 2005, a tropical storm formed in 2010 and there are predictions that others may form again. Events such as those described in the paper and which have occurred before 1987, generate data for the wind map presented in the Brazilian wind loading code NBR-6123. This wind map presents the reference wind speeds based on 3-second gust wind speed at 10 m height in open terrain, with 50-year return period, varying from 30 m/s (north half of country) to 50 m/s (extreme south). There is not a separation of the type of climatological event which generated each registered velocity. Therefore, a thunderstorm (TS), an extra-tropical pressure system (EPS) or even a tropical cyclone (TC) are treated the same and its resulting velocities absorbed without differentiation. Since the flow fields generated by each type of meteorological event may be distinct, the indiscriminate combination of the highest wind velocities with aerodynamic coefficients from boundary layer wind tunnels may lead to erroneous loading in buildings.

Influence of ventilation rate on the aerodynamic interference between two extra-large indirect dry cooling towers by CFD

  • Ke, S.T.;Liang, J.;Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.449-468
    • /
    • 2015
  • Current wind-resistance designs of large-scale indirect dry cooling towers (IDCTs) exclude an important factor: the influence of the ventilation rate for radiator shutter on wind loads on the outer surfaces of the tower shell. More seemingly overlooked aspects are the effects of various ventilation rates on the wind pressure distribution on the tower surfaces of two IDCTs, and the feature of the flow field around them. In order to investigate the effects of the radiator shutter ventilation rates on the aerodynamic interference between IDCTs, this paper established the numerical wind tunnel model based on the Computational Fluid Dynamic (CFD) technology, and analyzed the influences of various radiator shutter ventilation rates on the aerodynamic loads acting upon a single and two extra-large IDCTs during building, installation, and operation stages. Through the comparison with the results of physical wind tunnel test and different design codes, the results indicated that: the influence of the ventilation rate on the flow field and shape coefficients on the outer surface of a single IDCT is weak, and the curve of mean shape coefficients is close to the reference curve provided by the current design code. In a two-tower combination, the ventilation rate significantly affects the downwind surface of the front tower and the upwind surface of the back tower, and the larger positive pressure shifts down along the upwind surface of the back tower as the ventilation rate increases. The ventilation rate significantly influences the drag force coefficient of the back tower in a two-tower combination, the drag force coefficient increases with the ventilation rate and reaches the maximum in a building status of full ventilation, and the maximum drag coefficient is 11% greater than that with complete closure.

Numerical Evaluation of the Strut Interference and the 3-Run Image method for Wind Tunnel Tests

  • Chang, Byeong-Hee
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.17-21
    • /
    • 2000
  • In order to correct the strut interference in wind tunnel tests, image methods are conventionally used. Because of their excessive extra runs, some alternatives have been tried to reduce the extra runs. In this study, these alternatives were reviewed and checked by the strut interference evaluation with the panel code, CMARC. The present work shows that the strut interference is free from neither model configuration nor model attitude. This dependency makes the alternatives to the image method unfeasible. The 3-run image method was also evaluated. It worked well even for the exaggerated windshield. At this point, reducing the image runs by neglecting parameters affecting minor influence would be best.

  • PDF

A Study on the realrization of Low Wind Generation (저 풍속 발전 시스템 구현에 관한 연구)

  • Ji, Myoung-Kuk;Kong, Tae-Woo;Bae, Chul-Whan;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.891-896
    • /
    • 2001
  • The recent technology of Wind Power Generation in the world is rapidly developed better than the past time. The extra-large wind power generation system of the MW-class and the large wind power generation system of the hundreds kW-class were developed and became for common use. So, this paper is basic experiment for wind power generation at low wind, and aimed for small wind power generation system.

  • PDF

Windproof ability of aerodynamic measures to improve the wind environment above a truss girder

  • Wang, Zewen;Tang, Haojun;Li, Yongle;Guo, Junjie;Liu, Zhanhui
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.423-437
    • /
    • 2021
  • Aerodynamic measures have been widely used for improving the flutter stability of long-span bridges, and this paper focuses their windproof ability to improve the wind environment for vehicles. The whole wind environment around a long-span bridge located in high altitude mountainous areas is first studied. The local wind environment above the deck is then focused by two perspectives. One is the windproof effects of aerodynamic measures, and the other is whether the bridge with aerodynamic measures meets the requirement of flutter stability after installing extra wind barriers in the future. Furthermore, the effects of different wind barriers are analyzed. Results show that aerodynamic measures exert potential effects on the local wind environment, as the vertical stabilizer obviously reduces wind velocities behind it while the closed central slot has limited effects. The suggested aerodynamic measures have the ability to offset the adverse effect of the wind barrier on the flutter stability of the bridge. Behind the wind barrier, wind velocities decrease in general, but in some places incoming flow has to pass through the deck with higher velocities due to the increase in blockage ratio. Further comparison shows that the wind barrier with four bars is optimal.

The Analysis of Active Power Control Requirements in the Selected Grid Codes for Wind Farm

  • Kim, Mi-Young;Song, Yong-Un
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1408-1414
    • /
    • 2015
  • The renewable energies such as photovoltaic power, wind power and biomass have grown to a greater extent as decarbonization techniques. The renewable energies are interconnected to power systems (or electrical grids) in order to increase benefits from economies of scale, and the extra attention is focused on the Grid Code. A grid code defines technical parameters that power plants must meet to ensure functions of power systems, and the grid code determined by considering power system characteristics is various across the country. Some TSO (Transmission System Operator) and ISO (Independent System Operator) have issued grid code for wind power and the special requirements for offshore wind farm. The main purpose of the above grid code is that wind farm in power systems has to act as the existing power plants. Therefore wind farm developer and wind turbine manufacturer have great difficulty in grasping and meeting grid code requirements. This paper presents the basic understanding for grid codes of developed countries in the wind power and trends of those technical requirements. Moreover, in grid code viewpoint, the active power control of wind power is also discussed in details.

Study of biofouling in Korea offshore wind farms (국내 해상풍력발전단지에서의 바이오파울링에 대한 연구)

  • Yoon Seok Chae;Ho Min Kim; Ji Hyung Kim;Sung Hoon Lee
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.43-49
    • /
    • 2023
  • We have studied biofouling in Korea's offshore wind farms by using image analysis through monitoring and surface energy analysis. To observe the biofouling characteristics, samples were fabricated using Micron extra 2 and PropOne, which have a self-polishing property, and Hempathane HS 55610, which is used in substructure coatings. The manufactured samples were installed at the bottom of a ladder in a substructure, and monitored for 10 months. The most biofouling occurred in the sample without the self-polishing property, and algae, barnacles and corallinales were observed. The surface energy analysis used the Owens-Wendt-Rabel and Kaelble (OWRK) model, which uses the contact angles of two standard fluids. As a result of calculating the surface energy using contact angle measurement, the sample without the self-polishing property showed the highest value. This result was consistent with the biofouling incidence observed through monitoring.

Emerging issues and new frameworks for wind loading on structures in mixed climates

  • Solari, Giovanni
    • Wind and Structures
    • /
    • v.19 no.3
    • /
    • pp.295-320
    • /
    • 2014
  • Starting from an overview on the research on thunderstorms in the last forty years, this paper provides a general discussion on some emerging issues and new frameworks for wind loading on structures in mixed climates. Omitting for sake of simplicity tropical cyclones and tornadoes, three main aspects are pointed out. The first concerns the separation and classification of different intense wind events into extra-tropical depressions, thunderstorms and gust fronts, with the aim of improving the interpretation of the phenomena of engineering interest, the probabilistic analysis of the maximum wind velocity, the determination of the wind-induced response and the safety format for structures. The second deals with the use of the response spectrum technique, not only as a potentially efficient tool for calculating the structural response to thunderstorms, but also as a mean for revisiting the whole wind-excited response in a more general and comprehensive framework. The third involves the statistical analysis of extreme wind velocities in mixed climates, pointing out some shortcomings of the approaches currently used for evaluating wind loading on structures and depicting a new scenario for a more rational scheme aiming to pursue structural safety. The paper is set in the spirit of mostly simplified analyses and mainly qualitative remarks, in order to capture the conceptual aspects of the problems dealt with and put on the table ideas open to discussion and further developments.

A Study on the Characteristics of Low-Level Wind Shear at Jeju International Airport from Go-Around Flight Perspective (항공기 복행사례를 통한 제주국제공항 저층 윈드시어의 특징 연구)

  • Cho, Jin Ho;Baik, Ho Jong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Low level wind shear, which often occurs at Jeju International Airport, is a phenomenon that occurs when the topological location and topographical characteristics of Jeju Island are combined with weather characteristics. Low level wind shears, which are caused by rapid changes in wind direction and wind speed, pose a threat to aircraft safety and also cause abnormal situations, such as aircraft go-around, diversion, and cancellation. Many meteorological studies have been conducted on weather patterns, occurrence periods and frequency of low level wind shears. However, researches related to aircraft operations are limited where here we study the similarities and differences between strong southwest winds and bidirectional tailwind type low level wind shears based on aircraft go-around cases at Jeju International Airport. The results are expected to be used to enhance safety when operating to Jeju International Airport, which includes pilot training that reflects the characteristics generated by wind changes, pilot prior notification, providing pilots with latest trends, and increasing extra fuel.