DOI QR코드

DOI QR Code

Emerging issues and new frameworks for wind loading on structures in mixed climates

  • Solari, Giovanni (Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa)
  • Received : 2014.03.19
  • Accepted : 2014.07.20
  • Published : 2014.09.25

Abstract

Starting from an overview on the research on thunderstorms in the last forty years, this paper provides a general discussion on some emerging issues and new frameworks for wind loading on structures in mixed climates. Omitting for sake of simplicity tropical cyclones and tornadoes, three main aspects are pointed out. The first concerns the separation and classification of different intense wind events into extra-tropical depressions, thunderstorms and gust fronts, with the aim of improving the interpretation of the phenomena of engineering interest, the probabilistic analysis of the maximum wind velocity, the determination of the wind-induced response and the safety format for structures. The second deals with the use of the response spectrum technique, not only as a potentially efficient tool for calculating the structural response to thunderstorms, but also as a mean for revisiting the whole wind-excited response in a more general and comprehensive framework. The third involves the statistical analysis of extreme wind velocities in mixed climates, pointing out some shortcomings of the approaches currently used for evaluating wind loading on structures and depicting a new scenario for a more rational scheme aiming to pursue structural safety. The paper is set in the spirit of mostly simplified analyses and mainly qualitative remarks, in order to capture the conceptual aspects of the problems dealt with and put on the table ideas open to discussion and further developments.

Keywords

References

  1. Abd-Elaal, E., Mills, J.E. and Ma, X. (2013), "An analytical model for simulating steady state flows of downburst", J. Wind Eng. Ind. Aerod., 115, 53-64. https://doi.org/10.1016/j.jweia.2013.01.005
  2. Alahyari, A. and Longmire, E.K. (1995), "Dynamics of experimentally simulated microburst", AIAA J., 33(11), 2128-2136. https://doi.org/10.2514/3.12957
  3. Anderson, J.R., Orf., L.G. and Straka, J.M. (1992), "A 3-D model system for simulating thunderstorms microburst outflows", Meteorol. Atmos. Phys., 49, 123-131.
  4. Bakke, P. (1957), "An experimental investigation of a wall jet", J. Fluid Mech., 2(5), 467-472. https://doi.org/10.1017/S0022112057000270
  5. Burlando, M., De Gaetano, P., Pizzo, M., Repetto, M.P., Solari, G. and Tizzi, M. (2013), "Wind short-term forecast in port areas", Proceedings of the 6th European and African Conference on Wind Engineering, Cambridge, U.K.
  6. Burlando, M., Repetto, M.P., Solari, G., De Gaetano, P., Pizzo, M. and Tizzi, M. (2014), "Wind and waves numerical forecasting for safety access to port areas: the "Wind, Ports and Sea" project", Proceedings of the 6th International Symposium on Computational Wind Engineering, Hamburg, Germany.
  7. Butler, K. and Kareem, A. (2007), "Physical and numerical modeling of downburst generated gust fronts", Proceedings of the 12th International Conference on Wind Engineering, Cairns, Australia.
  8. Cao, S., Nishi, A. and Kikugawa, H. (2002), "Reproduction of wind velocity history in a multiple fan wind tunnel", J. Wind. Eng. Ind. Aerod., 90(12-15), 1719-1729. https://doi.org/10.1016/S0167-6105(02)00282-9
  9. Carassale, L. and Marre Brunenghi, M. (2013), "Dynamic response of trackside structures due to the aerodynamic effects produced by passing trains", J. Wind Eng. Ind. Aerod., 123, 317-324. https://doi.org/10.1016/j.jweia.2013.09.005
  10. Chay, M. and Albermani, F. (2005), "Dynamic response of a SDOF system subjected to simulated downburst winds", Proceedings of the 6th Asia-Pacific Conference on Wind Engineering, Seoul, Korea.
  11. Chay, M.T., Albermani, F. and Wilson, B. (2006), "Numerical and analytical simulation of downburst wind loads", Eng. Struct., 28(2), 240-254. https://doi.org/10.1016/j.engstruct.2005.07.007
  12. Chay, M.T. and Letchford, C.W. (2002), "Pressure distributions on a cube in a simulated thunderstorm downburst. Part A: stationary downburst observations", J. Wind Eng. Ind. Aerod., 90(7), 711-732. https://doi.org/10.1016/S0167-6105(02)00158-7
  13. Chay, M.T., Wilson, R. and Albermani, F (2008), "Gust occurrence in simulated non-stationary winds", J. Wind Eng. Ind. Aerod., 96(10-11), 2161-2172. https://doi.org/10.1016/j.jweia.2008.02.059
  14. Chen, X. and Huang, G. (2009), "Evaluation of peak resultant response for wind-excited tall buildings", Eng. Struct., 31, 858-868. https://doi.org/10.1016/j.engstruct.2008.11.021
  15. Chen, L. and Letchford, C.W. (2004a), "A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure", Eng. Struct., 26(5), 619-629. https://doi.org/10.1016/j.engstruct.2003.12.009
  16. Chen, L. and Letchford, C.W. (2004b), "Parametric study on the alongwind response of the CAARC building to downbursts in the time domain", J. Wind Eng. Ind. Aerod., 92(9), 703-724. https://doi.org/10.1016/j.jweia.2004.03.001
  17. Chen, L. and Letchford, C.W. (2005a), "Proper orthogonal decomposition of two vertical profiles of full-scale non-stationary correlated downburst wind speeds", J. Wind Eng. Ind. Aerod., 93(3), 187-266. https://doi.org/10.1016/j.jweia.2004.11.004
  18. Chen, L. and Letchford, C.W. (2005b), "Simulation of extreme winds from thunderstorm downbursts", Proceedings of the 4th European and African Conference on Wind Engineering, Prague, Czech Republic.
  19. Chen, L. and Letchford, C.W. (2006), "Multi-scale correlation analyses of two lateral profiles of full-scale downburst wind speeds", J. Wind Eng. Ind. Aerod., 94(9), 675-696. https://doi.org/10.1016/j.jweia.2006.01.021
  20. Choi, E.C.C. (1999), "Extreme wind characteristics over Singapore - an area in the equatorial belt", J. Wind Eng. Ind. Aerod., 83(1-3), 61-69. https://doi.org/10.1016/S0167-6105(99)00061-6
  21. Choi, E.C.C. (2000), "Wind characteristics of tropical thunderstorms", J. Wind Eng. Ind. Aerod., 84(2), 215-226. https://doi.org/10.1016/S0167-6105(99)00054-9
  22. Choi, E.C.C. (2004), "Field measurement and experimental study of wind speed during thunderstorms", J. Wind Eng. Ind. Aerod., 92(3-4), 275-290. https://doi.org/10.1016/j.jweia.2003.12.001
  23. Choi, E.C.C. and Hidayat, F.A. (2002a), "Gust factors for thunderstorm and non-thunderstorm winds", J. Wind Eng. Ind. Aerod., 90(12-15), 1683-1696. https://doi.org/10.1016/S0167-6105(02)00279-9
  24. Choi, E.C.C. and Hidayat, F.A. (2002b), "Dynamic response of structures to thunderstorm winds", Prog. Struct. Eng. Mat., 4(4), 408-416. https://doi.org/10.1002/pse.132
  25. Choi, E.C.C. and Tanurdjaja, A. (2002), "Extreme wind studies in Singapore. an area with mixed weather system", J. Wind Eng. Ind. Aerod., 90(12-15), 1611-1630. https://doi.org/10.1016/S0167-6105(02)00274-X
  26. Cook, N.J., Harris, R.I. and Whiting, R. (2003), "Extreme wind speeds in mixed climates revisited", J. Wind Eng. Ind. Aerod., 91(3), 403-422. https://doi.org/10.1016/S0167-6105(02)00397-5
  27. Darwish, M.M., El Damatty, A. and Hangan, H. (2010), "Dynamic characteristics of transmission line conductors and bahaviour under turbulent downburst loading", Wind Struct., 13(4), 327-346. https://doi.org/10.12989/was.2010.13.4.327
  28. Darwish, M.D. and El Damatty, A.A. (2011), "Behavior of self-supported transmission line towers under stationary downburst loading", Wind Struct., 14(5), 481-498. https://doi.org/10.12989/was.2011.14.5.481
  29. Davenport, A.G. (1961), "The application of statistical concepts to the wind loading of structures", Proc. Inst. Civ. Eng., 19(4), 449-472. https://doi.org/10.1680/iicep.1961.11304
  30. Davenport, A.G. (1964), "Note on the distribution of the largest value of a random function with application to gust loading", Proc. Inst. Civ. Eng., 28(2), 187-196. https://doi.org/10.1680/iicep.1964.10112
  31. De Gaetano, P. and Solari, G. (2013), "Thunderstorm wind velocity decomposition and moving average period", Proceedings of the 8th Asia-Pacific Conference on Wind Engineering, Chennai, India.
  32. De Gaetano, Repetto, M.P., Repetto, T. and Solari, G. (2013), "Separation and classification of extreme wind events from anemometric data", J. Wind Eng. Ind. Aerod., 126, 132-143.
  33. Didden, N. and Ho, C.M. (1985), "Unsteady separation in a boundary layer produced by an impinging jet", J. Fluid Mech., 160, 235-256. https://doi.org/10.1017/S0022112085003469
  34. Donaldson, C.D. and Snedeker, R.S. (1971), "A study of free jet impingement. part 1. Mean properties of free and impinging jet", J. Fluid Mech., 45(2), 235-256.
  35. Droegemeier, K.K. and Wjlhelmson, R.B. (1987), "Numerical simulation of thunderstorm outflow dynamics. Part 1: outflow sensitivity and turbulence dynamics", J. Atmos. Sci., 44(8), 1180-1210. https://doi.org/10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2
  36. Duranona, V., Sterling, M. and Baker, C.J. (2006), "An analysis of extreme non-synoptic winds", J. Wind Eng. Ind. Aerod., 95(9-11), 1007-1027.
  37. Eurocode 1 (2005), Actions on Structures - General Actions, Part 1-4: Wind Actions, CEN, EN 1991-1-4.
  38. Fujita, T.T. (1981), "Tornadoes and downbursts in the context of generalized planetary scales", J. Atmos. Sci., 38(8), 1511-1534. https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
  39. Fujita, T.T. (1985), Downburst: Microburst and macroburst, University of Chicago Press, Chicago, IL.
  40. Fujita, T.T. (1990), "Downburst: meteorological features and wind field characteristics", J. Wind Eng. Ind. Aerod., 36, 75-86. https://doi.org/10.1016/0167-6105(90)90294-M
  41. Fujita, T.T. and Wakimoto, R.M. (1981), "Five scales of airflow associated with a series of downbursts on 16 July 1980", Mon. Weather Rev., 109, 1438-1456. https://doi.org/10.1175/1520-0493(1981)109<1438:FSOAAW>2.0.CO;2
  42. Gast, K.D. and Schroeder, J.L. (2003), "Supercell rear-flank downdraft as sampled in the 2002 thunderstorm outflow experiment", Proceedings of the 11th International Conference on Wind Engineering, Lubbock, Texas.
  43. Glauert, M.B. (1956), "The wall jet", J. Fluid Mech., 1(6), 625-643. https://doi.org/10.1017/S002211205600041X
  44. Goff., R.G. (1976), "Vertical structure of thunderstorm outflows", Mon. Weather Rev., 104, 1429-1440. https://doi.org/10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2
  45. Gomes, L. and Vickery, B.J. (1976), "On thunderstorm wind gusts in Australia", Civ. Eng. Trans. Ind. Eng. Aust., 18, 33-39.
  46. Gomes, L. and Vickery, B.J. (1977/1978), "Extreme wind speeds in mixed climates", J. Wind Eng. Ind. Aerod., 2(4), 331-344. https://doi.org/10.1016/0167-6105(78)90018-1
  47. Grigoriu, M. (1986), "Response of linear systems to quadratic Gaussian excitations", J. Eng. Mech. - ASCE, 112(6), 523-535. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:6(523)
  48. Gunter, W.S. and Schroeder, J.L. (2013), "High-resolution full-scale measurements of thunderstorm outflow winds", Proceedings of the 12th Americas Conference on Wind Engineering, Seattle, Washington.
  49. Hjelmfelt, M.R. (1988), "Structure and life cycle of microburst outflows observed in Colorado", J. Appl. Meteor. Clim, 27(8), 900-927. https://doi.org/10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2
  50. Hjelmfelt, M.R., Roberts, R.D., Orville, H.D., Chen,J.P. and Kopp, F.J. (1989), "Observational and numerical study of a microburst line-producing storm", J. Atmos. Sci., 46, 2713-2744.
  51. Holmes, J.D. (1999), "Modelling of extreme thunderstorm winds for wind loading of structures and risk assessment", (Eds., Larsen, A. and Larose, G. ) Wind engineering into the 21st century, Balkema.
  52. Holmes, J.D., Hangan, H.M., Schroeder, J.L., Letchford, C.W. and Orwig, K.D. (2008), "A forensic study of the Lubbock-Reese downdraft of 2002", Wind Struct., 11(2), 19-39. https://doi.org/10.12989/was.2008.11.1.019
  53. Holmes, J.D. and Oliver, S.E. (2000), "An empirical model of a downburst", Eng. Struct., 22(9), 1167-1172. https://doi.org/10.1016/S0141-0296(99)00058-9
  54. Housner, G.W. (1959), "Behavior of structures during earthquakes", J. Mech. Div. - ASCE, 85, 109-129.
  55. Housner, G.W., Martel, R.R. and Alford, J.L. (1953), "Spectrum analysis of strong-motion earthquakes", Bull. Seism. Soc. Am., 43(2), 97-119.
  56. Huang, G. and Chen, X. (2009), "Wavelets-based estimation of multivariate evolutionary spectra and its application to nonstationary downburst winds", Eng. Struct., 31(4), 976-989. https://doi.org/10.1016/j.engstruct.2008.12.010
  57. Ivan, M. (1986), "A ring-vortex downburst model for flight simulations", J. Aircraft, 23(3), 232-236. https://doi.org/10.2514/3.45294
  58. Kappos, A.J. (Ed.) (2001), Dynamic Loading and Design of Structures, Spon Press, London.
  59. Kasperski, M. (2002), "A new wind zone map of Germany", J. Wind Eng. Ind. Aerod., 90(11), 1271-1287. https://doi.org/10.1016/S0167-6105(02)00257-X
  60. Kasperski, M. (2009), "Wind fields in gust fronts", Proceedings of the 11th Americas Conference on Wind Engineering, Puerto Rico.
  61. Kim, J. and Hangan, H. (2007), "Numerical simulations of impinging jets with application to downbursts", J. Wind Eng. Ind. Aerod., 95(4), 279-298. https://doi.org/10.1016/j.jweia.2006.07.002
  62. Knupp, K.R. (1989), "Numerical simulation of low-level downdraft initiation within precipitating cumulonimbi: some preliminary results", Mon. Weather Rev., 117(7), 1517-1529. https://doi.org/10.1175/1520-0493(1989)117<1517:NSOLLD>2.0.CO;2
  63. Kwon, D.K. and Kareem, A. (2009), "Gust-front factor: New framework for wind load effects on structures", J. Struct. Eng. - ASCE, 135(6), 717-732. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:6(717)
  64. Kwon, D.K. and Kareem, A. (2011), "Peak factors for non-Gaussian load effects revisited", J. Struct. Eng. - ASCE, 137(12), 1611-1619. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000412
  65. Kwon, D.K. and Kareem, A. (2013), "Generalized gust-front factor: A computational framework for wind load effects", Eng. Struct., 48, 635-644. https://doi.org/10.1016/j.engstruct.2012.12.024
  66. Landreth, C.C. and Adrian, R.J. (1990), "Impingement of a low Reynolds number turbulent circular jet onto a flat plate at normal incidence", Exp. Fluids, 9(1-2), 74-84. https://doi.org/10.1007/BF00575338
  67. Launder, B.E. and Rodi, W. (1981), "The turbulent wall jet", Prog. Aerosp. Sci., 19, 81-128.
  68. Letchford, C.W. and Chay, M.T. (2002), "Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: moving downburst observations", J. Wind Eng. Ind. Aerod., 90(7), 733-753. https://doi.org/10.1016/S0167-6105(02)00163-0
  69. Letchford, C.W. and Illidge, G. (1999), "Turbulence and topographic effects in simulated thunderstorm downdrafts by wind tunnel jet", (Eds. Larsen, A. and Larose, G.), Wind engineering into the 21st century, Balkema.
  70. Letchford, C.W., Mans, C. and Chay, M.T. (2002), "Thunderstorms - their importance in wind engineering (a case for the next generation wind tunnel)", J. Wind Eng. Ind. Aerod., 90(12-15), 1415-1433. https://doi.org/10.1016/S0167-6105(02)00262-3
  71. Li, C.Q. (2000), "A stochastic model of severe thunderstorms for transmission line design", Prob. Eng. Mech., 15(4), 359-364. https://doi.org/10.1016/S0266-8920(99)00037-5
  72. Li, C., Li, Q.S., Xiao, Y.Q. and Ou, J.P. (2012), "A revised empirical model and CFD simulations for 3D axisymmetric steady-state flows of downbursts and impinging jets", J. Wind Eng. Ind. Aerod., 102, 48-60. https://doi.org/10.1016/j.jweia.2011.12.004
  73. Lin, E.W., Orf, L.G., Savory, E. and Novacco, C. (2007), "Proposed large-scale modelling of the transient features of a downburst outflow", Wind Struct., 10(4), 315-346. https://doi.org/10.12989/was.2007.10.4.315
  74. Lin, W.E. and Savory, E. (2006), "Large-scale quasi-steady modeling of a downburst outflow using a slot jet", Wind Struct., 9(6), 419-440. https://doi.org/10.12989/was.2006.9.6.419
  75. Liu, J.Y. and Orville, H.D. (1969), "Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli", J. Atmos. Sci., 26(6), 1283-1298. https://doi.org/10.1175/1520-0469(1969)026<1283:NMOPAC>2.0.CO;2
  76. Lombardo, F.T. (2012), "Improved extreme wind speed estimation for wind engineering applications", J. Wind Eng. Ind. Aerod., 104-106, 278-284. https://doi.org/10.1016/j.jweia.2012.02.025
  77. Lombardo, F.T., Main, J.A. and Simiu, E. (2009), "Automated extraction and classification of thunderstorm and non-thunderstorm wind data for extreme-value analysis", J. Wind Eng. Ind. Aerod., 97, 120-131. https://doi.org/10.1016/j.jweia.2009.03.001
  78. Lombardo, F.T., Smith, D.A., Schroeder, J.L., Mehta, K.C. (2014), "Thunderstorm characteristics of importance to wind engineering", J. Wind Engng. Ind. Aerod., 125, 121-132. https://doi.org/10.1016/j.jweia.2013.12.004
  79. Lundgren, T.S., Yao, J. and Mansour, N.N. (1992), "Microburst modelling and scaling", J. Fluid Mech., 239, 461-488. https://doi.org/10.1017/S002211209200449X
  80. Mason, M., Fletcher, D.F. and Wood, G.S. (2010), "Numerical simulation of idealised three-dimensional downburst wind fields", Eng. Struct., 32(11), 3558-3570. https://doi.org/10.1016/j.engstruct.2010.07.024
  81. Mason, M., Letchford, C.W. and James, D.L. (2005), "Pulsed jet simulation of a stationary thunderstorm downburst. Part A: Physical structure and flow field characterization", J. Wind Eng. Ind. Aerod., 93(7), 557-580. https://doi.org/10.1016/j.jweia.2005.05.006
  82. Mason, M.S., Wood, G.S. and Fletcher, D.F. (2009), "Numerical simulation of downburst winds", J. Wind Eng. Ind. Aerod., 97(11-12), 523-539. https://doi.org/10.1016/j.jweia.2009.07.010
  83. Matsumoto, M., Shimamura, M., Maeda, T., Shirato, H., Yagi, T., Hori, K., Kawashima, Y. and Hashimoto, M. (2007), "Drag forces on 2-D cylinders due to sudden increase of wind velocity", Proceedings of the 12th Int. Conf. on Wind Engineering, Cairns, Australia.
  84. McConville, A.C., Sterling, M. and Baker, C.J. (2009), "The physical simulation of thunderstorm downbursts using an impinging jet", Wind Struct., 12(2), 133-149. https://doi.org/10.12989/was.2009.12.2.133
  85. Miller, M.J. and Pearce, R. (1974), "A three-dimensional primitive equation model of cumulonimbus convection", Q. J. Roy. Meteor. Soc., 100(424), 133-154. https://doi.org/10.1002/qj.49710042402
  86. Mitchell, K.E. and Hovermale, J.B. (1977), "A numerical investigation of the severe thunderstorm gust front", Mon. Weather Rev., 105(5), 657-675. https://doi.org/10.1175/1520-0493(1977)105<0657:ANIOTS>2.0.CO;2
  87. Nicholls, M., Pielke, R. and Meroney, R. (1993), "Large eddy simulation of microburst winds flowing around a building", J. Wind Eng. Ind. Aerod., 46 -47, 229-237. https://doi.org/10.1016/0167-6105(93)90288-Y
  88. Okajima, A., Matsumoto, T. and Kimura, S. (1997), "Force measurements and flow visualization of bluff bodies in oscillatory flow", J. Wind. Eng. Ind. Aerod., 69-71, 213-228. https://doi.org/10.1016/S0167-6105(97)00156-6
  89. Oliver, S.E., Moriarty, W.W. and Holmes, J.D. (2000), "A risk model for design of transmission line systems against thunderstorm down burst winds", Eng. Struct., 22(9), 1173-1179. https://doi.org/10.1016/S0141-0296(99)00057-7
  90. Orf, L.G. and Anderson, J.R. (1999), "A numerical study of travelling microbursts", J. Atmos. Sci., 127(6), 1244-1258.
  91. Orf, L.G., Anderson, J.R. and Straka, J.M. (1997), "A three dimensional numerical analysis of colliding microburst outflow dynamics", J. Atmos. Sci., 53(17), 2490-2511.
  92. Orf, L., Kantor, E. and Savory, E. (2012), "Simulation of a downburst-producing thunderstorm using a very high-resolution three-dimensional cloud model", J. Wind Eng. Ind. Aerod., 104-106, 547-557. https://doi.org/10.1016/j.jweia.2012.02.020
  93. Orville, H.D. (1965), "A numerical study of the initiation of cumulus clouds over mountainous terrain", J. Atmos. Sci., 24, 1596-1618.
  94. Orwig, K.D. and Schroeder, J.L. (2007), "Near-surface wind characteristics of extreme thunderstorm outflows", J. Wind Eng. Ind. Aerod., 95, 565-584. https://doi.org/10.1016/j.jweia.2006.12.002
  95. Oseguera, R.M. and Bowles, R.L. (1988), A simple analytic 3-dimensional downburst model based on boundary layer stagnation flow, NASA Technical Memorandum 100632.
  96. Pastushkov, R.S. (1975), "The effects of vertical wind shear on the evolution of convective clouds", Q. J. Roy. Meteor. Soc., 101(428), 281-291. https://doi.org/10.1002/qj.49710142811
  97. Ponte Jr., J. and Riera, J.D. (2007), "Wind velocity field during thunderstorms", Wind Struct., 10(3), 287-300. https://doi.org/10.12989/was.2007.10.3.287
  98. Ponte, Jr., J. and Riera, J.D. (2010), "Simulation of extreme wind series caused by thunderstorms in temperate latitudes", Struct. Saf., 32(4), 131-137.
  99. Poreh, M., Tsuel, Y.G. and Cermak, J.E. (1967), "Investigation of a turbulent radial wall Jet", J. Appl. Mech.- T. ASME, 34(2), 457-463. https://doi.org/10.1115/1.3607705
  100. Proctor, F.H. (1987a), The terminal area simulation system. I: theoretical formulation, NASA Contractor Report 4046.
  101. Proctor, F.H. (1987b), The terminal area simulation system. II: verification cases, NASA Contractor Report 4047.
  102. Proctor, F.H. (1988), "Numerical simulations of an isolated micro burst. Part I: dynamics and structure", J. Atmos. Sci., 45(21), 3137-3159. https://doi.org/10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2
  103. Proctor, F.H. (1989), "Numerical simulations of an isolated microburst. Part II: Sensitivity experiments", J. Atmos. Sci., 46(14), 2143-2165. https://doi.org/10.1175/1520-0469(1989)046<2143:NSOAIM>2.0.CO;2
  104. Riera, J.D. and Nanni, L.F. (1989), "Pilot study of extreme wind velocities in a mixed climate considering wind orientation", J. Wind Eng. Ind. Aerod., 32(1-2), 11-20. https://doi.org/10.1016/0167-6105(89)90012-3
  105. Riera, J.D., Viollaz, A.J. and Reimundin, J.C. (1977), "Some recent results on probabilistic models of extreme wind speeds", J. Wind Eng. Ind. Aerod., 2(3), 271-287. https://doi.org/10.1016/0167-6105(77)90027-7
  106. Rowcroft, J. (2011), "Vertical wind shear profiles in downburst events and the insufficiency of wind turbine design codes", Proceedings of the 13th International Conference on Wind Engineering, Amsterdam, The Netherlands.
  107. Sarpkaya, T. (1963), "Lift, drag, and mass coefficients for a circular cylinder immersed in time dependent flow", J. Appl. Mech - T ASME., 30(1), 13-15. https://doi.org/10.1115/1.3630062
  108. Savory, E., Parke, G.A.R., Zeinoddini, M., Toy, N. and Disney, P. (2001), "Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower", Eng. Struct., 23(4), 365-375. https://doi.org/10.1016/S0141-0296(00)00045-6
  109. Selvam, R.P. and Holmes, J.D. (1992), "Numerical simulation of thunderstorm downdrafts", J. Wind Eng. Ind. Aerod., 41-44, 2817-2825.
  110. Sengupta, A. and Sarkar, P.P. (2008), "Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds", J. Wind Eng. Ind. Aerod., 96(3), 345-365. https://doi.org/10.1016/j.jweia.2007.09.001
  111. Shehata, A.Y., El Damatty, A.A. and Savory, E. (2005), "Finite element modelling of transmission line under downburst wind loading", Finite Elem. Anal. Des., 42(1), 71-89. https://doi.org/10.1016/j.finel.2005.05.005
  112. Shehata, A.Y. and El Damatty, A.A. (2007), "Behaviour of guyed transmission line structures under downburst wind loading", Wind Struct., 10(3), 249-268. https://doi.org/10.12989/was.2007.10.3.249
  113. Sherman, D.J. (1987), "The passage of a weak thunderstorm downburst over an instrumented tower", Mon. Weather Rev., 115(6), 1193- 1205. https://doi.org/10.1175/1520-0493(1987)115<1193:TPOAWT>2.0.CO;2
  114. Soize, C. (1978), "Gust loading factors with nonlinear pressure terms", J. Struct. Div. - ASCE, 104, 991-1007.
  115. Solari, G., Repetto, M.P., Burlando, M., De Gaetano, P., Pizzo, M., Tizzi, M. and Parodi, M. (2012), "The wind forecast for safety and management of port areas", J. Wind Eng. Ind. Aerod., 104-106, 266-277. https://doi.org/10.1016/j.jweia.2012.03.029
  116. Solari, G., De Gaetano, P. and Repetto, M.P. (2013a), "Thunderstorm response spectrum", Proceedings of the 12th Americas Conference on Wind Engineering, Seattle, WA.
  117. Solari, G., De Gaetano, P. and Repetto, M.P. (2013b), "Wind loading and response of structures in mixed climates", Proceedings of the 8th Asia-Pacific Conference on Wind Engineering, Chennai, India.
  118. Solari, G. (1989), "Wind response spectrum", J. Eng. Mech. - ASCE, 115(9), 2057-2073. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:9(2057)
  119. Srivastava, R.C. (1985), "A simple model of evaporatively driven downdraft: Application to microburst downdraft", J. Atmos. Sci., 42(10), 1004-1023. https://doi.org/10.1175/1520-0469(1985)042<1004:ASMOED>2.0.CO;2
  120. Steiner. J.T. (1973), "A three-dimensional model of cumulus cloud development", J. Atmos. Sci., 30(3), 414-435. https://doi.org/10.1175/1520-0469(1973)030<0414:ATDMOC>2.0.CO;2
  121. Sterling, M., Baker, C., Haines, M. and Quinn, A. (2011), "Scaling a thunderstorm downburst simulator", Proceedings of the 13th International Conference on Wind Engineering, Amsterdam, The Netherlands.
  122. Straka, J.M. and Anderson, J.R. (1993), "Numerical simulations of microburst producing storms: some results from storms observed during COHMEX", J. Atmos. Sci., 50(10), 1329-1348. https://doi.org/10.1175/1520-0469(1993)050<1329:NSOMPS>2.0.CO;2
  123. Thom, H.C.S. (1967), "Toward a universal climatological extreme wind distribution", Proceedings of the 2nd International Conference on Wind Effects on Buildings and Structures, Ottawa, Canada, 669-683.
  124. Thom, H.C.S. (1968), "New distributions of extreme wind speeds in the United States", J. Struct. Div. - ASCE, 94, 1787-1801.
  125. Twisdale, L.A. and Vickery, P.J. (1992), "Research on thunderstorm wind design parameters", J. Wind Eng. Ind. Aerod., 41(1-3), 545-556. https://doi.org/10.1016/0167-6105(92)90461-I
  126. Vanmarcke, E.H. (1975), "On the distribution of the first-passage time for normal stationary random processes", J. Appl. Mech. - T ASME, 42(1), 215-220. https://doi.org/10.1115/1.3423521
  127. Vermeire, B.C., Orf, L.G. and Savory, E. (2011a), "A parametric study of downburst line near-surface outflows", J. Wind Eng. Ind. Aerod., 99(4), 226-238. https://doi.org/10.1016/j.jweia.2011.01.019
  128. Vermeire, B.C., Orf, L.G. and Savory, E. (2011b), "Improved modeling of downburst outflows for wind engineering applications using a cooling source approach", J. Wind Eng. Ind. Aerod., 99(8), 801-814. https://doi.org/10.1016/j.jweia.2011.03.003
  129. Vicroy, D.D. (1991), A simple, analytical, axisimmetric microbust model for downdraft estimation, NASA Technical Memorandum No. 104053.
  130. Vicroy, D.D. (1992), "Assessment of micro burst models for downdraft estimation", J. Aircraft, 29(6), 1043-1048. https://doi.org/10.2514/3.46282
  131. Wakimoto, R.M. (1982), "The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data", Mon. Weather Rev., 110(8), 1060-1082. https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2
  132. Wilson, J.W., Roberts, R.D., Kessinger C. and McCarthy, J. (1984), "Microburst wind structure and evaluation of Doppler radar for airport wind shear detection", J. Climate Appl. Meteor., 23(6), 898-915. https://doi.org/10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2
  133. Wisner, C., Orville, H.D. and Myers, C. (1972), "A numerical model of a hail-bearing cloud", J. Atmos. Sci., 29(6), 1160-1181. https://doi.org/10.1175/1520-0469(1972)029<1160:ANMOAH>2.0.CO;2
  134. Wood, G.S. and Kwok, K.C.S. (1998), "An empirically derived estimate for the mean velocity profile of a thunderstorm downburst", Proceedings of the 7th Australian Wind Engineering Society Workshop, Auckland.
  135. Wood, G.S., Kwok, K.C.S., Motteram, N.A. and Fletcher, D.F. (2001), "Physical and numerical modelling of thunderstorm downburst", J. Wind Eng. Ind. Aerod., 89(6), 535-552. https://doi.org/10.1016/S0167-6105(00)00090-8
  136. Xu, Y.L. and Chen, J. (2004), "Characterizing nonstationary wind speed using empirical mode decomposition", J. Struct. Eng.- ASCE, 130(6), 912-920. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(912)
  137. Xu, Z. and Hangan, H. (2008), "Scale, boundary and inlet condition effects on impinging jets", J. Wind Eng. Ind. Aerod., 96(12), 2383-2402. https://doi.org/10.1016/j.jweia.2008.04.002
  138. Yao, J. and Lundgren, T.S. (1996), "Experimental investigation of microbursts", Exp. Fluids, 21(l), 17-25. https://doi.org/10.1007/BF00204631
  139. Yeo, D.H. (2011), "Database assisted design for high-rise structures in mixed extreme wind climates", Proceedings of the 13th International Conference on Wind Engineering, Amsterdam, The Netherlands.
  140. Zhu, S. and Etkin, B. (1985), "Model of the wind field in a downburst", J. Aircraft, 22(7), 595-601. https://doi.org/10.2514/3.45171

Cited by

  1. Integrated tools for improving the resilience of seaports under extreme wind events vol.32, 2017, https://doi.org/10.1016/j.scs.2017.03.022
  2. Characteristics of thunderstorms relevant to the wind loading of structures vol.20, pp.6, 2015, https://doi.org/10.12989/was.2015.20.6.763
  3. A web-based GIS platform for the safe management and risk assessment of complex structural and infrastructural systems exposed to wind vol.117, 2018, https://doi.org/10.1016/j.advengsoft.2017.03.002
  4. Thunderstorm response spectrum: Fundamentals and case study vol.143, 2015, https://doi.org/10.1016/j.jweia.2015.04.009
  5. Hybrid simulation of thunderstorm outflows and wind-excited response of structures vol.52, pp.13, 2017, https://doi.org/10.1007/s11012-017-0718-x
  6. A refined analysis of thunderstorm outflow characteristics relevant to the wind loading of structures 2017, https://doi.org/10.1016/j.probengmech.2017.06.003
  7. Thunderstorm response spectrum technique: Theory and applications vol.108, 2016, https://doi.org/10.1016/j.engstruct.2015.11.012
  8. Field Data Analysis and Weather Scenario of a Downburst Event in Livorno, Italy, on 1 October 2012 vol.145, pp.9, 2017, https://doi.org/10.1175/MWR-D-17-0018.1
  9. Observed gust wind speeds in the coterminous United States, and their relationship to local and regional drivers vol.173, 2018, https://doi.org/10.1016/j.jweia.2017.12.008
  10. Wind Loading of Structures: Framework, Phenomena, Tools and Codification vol.12, 2017, https://doi.org/10.1016/j.istruc.2017.09.008
  11. Joint Modeling of the Parent Population and Extreme Value Distributions of the Mean Wind Velocity vol.142, pp.2, 2016, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001415
  12. Monitoring, cataloguing, and weather scenarios of thunderstorm outflows in the northern Mediterranean vol.18, pp.9, 2018, https://doi.org/10.5194/nhess-18-2309-2018
  13. Bora wind characteristics for engineering applications vol.24, pp.6, 2014, https://doi.org/10.12989/was.2017.24.6.579
  14. Characteristics of downslope winds in the Liguria Region vol.24, pp.6, 2014, https://doi.org/10.12989/was.2017.24.6.613
  15. Review of downslope windstorms in Japan vol.24, pp.6, 2017, https://doi.org/10.12989/was.2017.24.6.637
  16. Extreme wind speed distribution in a mixed wind climate vol.176, pp.None, 2014, https://doi.org/10.1016/j.jweia.2018.03.019
  17. Characterizing wind gusts in complex terrain vol.19, pp.6, 2014, https://doi.org/10.5194/acp-19-3797-2019
  18. Aerodynamic loading of a typical low-rise building for an experimental stationary and non-Gaussian impinging jet vol.28, pp.5, 2014, https://doi.org/10.12989/was.2019.28.5.315
  19. Directional response of structures to thunderstorm outflows vol.54, pp.9, 2014, https://doi.org/10.1007/s11012-019-00986-5
  20. Thunderstorm Downbursts and Wind Loading of Structures: Progress and Prospect vol.6, pp.None, 2020, https://doi.org/10.3389/fbuil.2020.00063
  21. Investigation of the Weather Conditions During the Collapse of the Morandi Bridge in Genoa on 14 August 2018 Using Field Observations and WRF Model vol.11, pp.7, 2014, https://doi.org/10.3390/atmos11070724
  22. Characterizing Thunderstorm Gust Fronts near Complex Terrain vol.148, pp.8, 2014, https://doi.org/10.1175/mwr-d-19-0316.1
  23. Damage to transmission towers under thunderstorm winds vol.4, pp.2, 2014, https://doi.org/10.1002/cepa.1294