• Title/Summary/Keyword: Wind energy resources

Search Result 266, Processing Time 0.024 seconds

The power sector of Mongolia: Current status and future opportunities

  • Myagmarsuren, Baldorj
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.69-75
    • /
    • 2020
  • Mongolia is located between Russia and China in Central Asia. In coal-rich corners, both the energy and energy sectors of our country prevail. Mongolia has vast resources of renewable energy and limited hydropower plants, such as wind and solar. In their first iNDC (intended Nationally Determined Contributions) submitted in 2015, Mongolia has pledged to increase the share of renewables capacity to 20% by 2020, and 30% by 2030 while reducing their energy related GHG emissions.

Offshore Wind Resource Assessment around Korean Peninsula by using QuikSCAT Satellite Data (QuikSCAT 위성 데이터를 이용한 한반도 주변의 해상 풍력자원 평가)

  • Jang, Jea-Kyung;Yu, Byoung-Min;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1121-1130
    • /
    • 2009
  • In order to investigate the offshore wind resources, the measured data from the QuikSCAT satellite was analyzed from Jan 2000 to Dec 2008. QuikSCAT satellite is a specialized device for a microwave scatterometer that measures near-surface wind speed and direction under all weather and cloud conditions. Wind speed measured at 10 m above from the sea surface was extrapolated to the hub height by using the power law model. It has been found that the high wind energy prevailing in the south sea and the east sea of the Korean peninsula. From the limitation of seawater depth for piling the tower and archipelagic environment around the south sea, the west and the south-west sea are favorable to construct the large scale offshore wind farm, but it needs efficient blade considering relatively low wind speed. Wind map and monthly variation of wind speed and wind rose using wind energy density were investigated at the specified positions.

The Development of Hybrid Power System using small Wind and Solar Energy (소형 풍력과 태양 에너지를 이용한 하이브리드 발전시스템 개발)

  • Kim, Min;Lee, Dong Heon;Jeong, Jae-Hoon;Park, Won-Hyeon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.250-251
    • /
    • 2015
  • The situation requires a global alternative energy resources due to the lack of rapid consumption of fossil fuel and nuclear fuel that occurs in nature. There are a number of alternative energy research and development in the world today. Of which there is an existing wind power generation system has been developed into a large-scale systematic trend of small wind power systems have created a wind power generation system using a simple principle. Existing small wind turbine system is a situation that is in many places a deterioration odor problems and maintenance of power generation efficiency because it came to be developed systematically. In this paper, we developed a hybrid power system that can develop the solar energy at the same time as the increase in the small wind power generation efficiency and the system to develop that can efficiently maintain the hybrid power generation system through the network.

  • PDF

Optimum Macro-Siting for Offshore Wind Farm Using RDAPS Sea Wind Model (RDAPS Sea Wind Model을 이용한 해상풍력발전단지 최적 Macro-Siting)

  • Lee, K.H.;Jun, S.O.;Park, K.H.;Lee, D.H.;Park, Jong-Po
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.286-290
    • /
    • 2011
  • This paper introduces the optimum macro-siting of a potential site for an offshore wind farm around Jeju Island using the RDAPS sea wind model. The statistical model was developed by analyzing the sea wind data from RDAPS model, and the meso-scale digital wind map was prepared. To develop the high resolution spatial calibration model, Artificial Neural Network(ANN) models were used to construct the wind and bathymetric maps. Accuracy and consistency of wind/bathymetric spatial calibration models were obtained using analysis of variance. The optimization problem was defined to maximize the energy density satisfying the criteria of maximum water depth and maximum distance from the coastline. The candidate site was selected through Genetic Algorithm(GA). From the results, it is possible to predict roughly a candidate site location for the installation of the offshore wind jam, and to evaluate the wind resources of the proposed site.

  • PDF

Feasibility for the Application of Wind Power Energy in SI WHA (시화지구의 풍력에너지 활용 가능 타당성)

  • Hong, Yeong-Jae;Chae, Ji-Seog;Kim, Hee-Gon;Kim, Ki-Won;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1725-1727
    • /
    • 2005
  • Korea Water Resource Corporation is planning the active application on the New-Renewable energy enterprise at Si-Wha region which is located in Kyonggi-Do, builded up as the national policy enterprise and also currently carrying out a tidal electric power station construction. This research is considered of geography circumstance of the region. We are to analyze a wind power resources application feasibility in the side of economical efficiency and see simultaneously application of the wind power system also.

  • PDF

Development of a Suitability Analysis System for Wind Energy Facilities Using 3D Web GIS (3차원 Web GIS 기반 풍력에너지 시설물 적지분석 시스템 개발)

  • Kim, Kwang-Deuk;Yun, Chang-Yeol;Jo, Myung-Hee;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.81-90
    • /
    • 2012
  • Recently, with an increased social interest in new and renewable energy resources, together with rapid advancement in IT(information technology) and spatial information technology, there have recently been a lot of attempts to find out methods to make systematic and scientific use of information technology and spatial information technology, depending upon a fusion with GIS(Geographic Information System) spatial information technology in the field of new and renewable energy. This paper developed a suitability analysis system to conduct a correct and precise analysis of an ideal place for wind energy facilities in comprehensive consideration of topographic, economic, and cultural environments. It also used recent spatial information technology including 3D GIS to develop a supportive system for an analysis and decision making of an ideal place for 3D Web GIS-based wind energy facilities like a precise field information implementation, a 3D result display, a 3D object implementation, simulation, and so on. These systems make it possible to build scientific new-renewable energy facilities, to collect, manage and analyze information in an accurate and quantitative manner. In addition, they help serve as a turning point for the construction of a real-time information supply system. Furthermore, they can support rational decision making by making it possible to analyze a variety of forms of field information through building a system for the management of 3D image-based information on new-renewable energy resources.

Comparative Analysis of a Competitive Technology for Major Future Energy Resources

  • Koo Young-Duk;Kim Eun-Sun;Park Young-Seo
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.2
    • /
    • pp.101-104
    • /
    • 2005
  • Recently advanced countries are making every effort to promote the efficiency of electric power production and supply, to deal with the environmental problems, and to develop the new energy. In particular, they are driving forward to develop various technologies for electric power in mid-long term, that are technology for building infrastructure of power transportation, establishing service network for account management using electronic technologies, elevating economic productivity by innovative electronic technologies, control-ling the discharge of global warming gas, using clean efficient energy, and so forth. However, power technology of Korea lagged behind than technology of advanced countries. Also, resources for developing power technology are limited in our country. Therefore, it is necessary to improve the efficiency of R&D investment. For it, our country must compare and analyze with technologies of advanced countries which are taking competitive advantage in the main future energy. Through comparative analysis, limited R&D resources of our country must be concentrated on technologies that can secure competitive advantage from now on.

Correlation Analysis on $CO_2$ Emission and Cost of Energy Resources and Life Cycle Assessment (에너지자원의 이산화탄소 배출량과 비용의 상관관계 분석과 전과정평가)

  • Kim, Heetae;Kim, Eun Chul;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.153-153
    • /
    • 2010
  • The world is moving towards a post-carbon society and needs clean and renewable energy for sustainable development. There are many methodological approaches which are helping this shift based on analyzed data about energy resources and which focus on limited types of energy including liquid fossil, solid fossil, gaseous fossil, and biomass (e.g. IPCC Guidelines, ISO 14064-1, WRI Protocol, etc.). We should also consider environmental impact (e.g. greenhouse gas emissions, water use, etc.) and the economic cost of the renewable energy to make a better decision. Recently, researchers have addressed the environmental impact of new technologies which include photovoltaics, wind turbines, hydroelectric power, and biofuel. In this work, we analyze the environmental impact with a carbon emission factor to present a correlation between $CO_2$ emission and the cost of energy resources standardized by the energy output. In addition, we reviewed Life Cycle Assessment (LCA) as another methodology. Researchers who are studying energy systems have ignored the impacts of entire energy systems, e.g. the extraction and processing of fossil fuels. In power sector, the assessment should include extraction, processing, and transportation of fuels, building of power plants, production of electricity, and waste disposal. Therefore LCA could be more suitable tool for energy cost and environmental impact estimation.

  • PDF

Introduction to Submarine Power Cable Detection Technology (해저 전력 케이블 탐지 기술 소개)

  • Daechul Kim;Hyeji Chae;Wookeen Chung;ChangBeom Yun;Jong Hyun Kim;Jeonghun Kim;Sungryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.57-68
    • /
    • 2024
  • Offshore wind power is increasingly regarded as a viable solution for reducing greenhous emissions due to the construction of wind farms and their superior power generation efficiency. Submarine power cables play a crucial role in transmitting the electricity generated offshore to land. To monitor cables and identify points of failure, analyzing the location or depth of burial of submarine cables is necessary. This study reviewed the technology and research for detecting submarine power cables, which were categorized into seismic/acoustic, electromagnetic, and magnetic exploration. Seismic/acoustic waves are primarily used for detecting submarine power cables by installing equipment on ships. Electromagnetic and magnetic exploration detects cables by installing equipment on unmanned underwater vehicles, including autonomous underwater vehicles (AUV) and remotely operated vihicles (ROV). This study serves as a foundational resource in the field of submarine power cable detection.

Probabilistic Reliability Based Grid Expansion Planning of Power System Including Wind Turbine Generators

  • Cho, Kyeong-Hee;Park, Jeong-Je;Choi, Jae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.698-704
    • /
    • 2012
  • This paper proposes a new methodology for evaluating the probabilistic reliability based grid expansion planning of composite power system including the Wind Turbine Generators. The proposed model includes capacity limitations and uncertainties of the generators and transmission lines. It proposes to handle the uncertainties of system elements (generators, lines, transformers and wind resources of WTG, etc.) by a Composite power system Equivalent Load Duration Curve (CMELDC)-based model considering wind turbine generators (WTG). The model is derived from a nodal equivalent load duration curve based on an effective nodal load model including WTGs. Several scenarios are used to choose the optimal solution among various scenarios featuring new candidate lines. The characteristics and effectiveness of this simulation model are illustrated by case study using Jeju power system in South Korea.