• 제목/요약/키워드: Wind energy conversion system

검색결과 112건 처리시간 0.028초

Modeling of Solar/Hydrogen/DEGS Hybrid System for Stand Alone Applications of a Large Store

  • Hong, Won-Pyo
    • 조명전기설비학회논문지
    • /
    • 제27권11호
    • /
    • pp.57-68
    • /
    • 2013
  • The market for distributed power generation based on renewable energy is increasing, particularly for standalone mini-grid applications in developing countries with limited energy resources. Stand-alone power systems (SAPS) are of special interest combined with renewable energy design in areas not connected to the electric grid. Traditionally, such systems have been powered by diesel engine generator sets (DEGS), but also hybrid systems with photovoltaic and/or wind energy conversion systems (WECS) are becoming quite common nowadays. Hybrid energy systems can now be used to generate energy consumed in remote areas and stand-alone microgrids. This paper describes the design, simulation and feasibility study of a hybrid energy system for a stand-alone power system. A simulated model is developed to investigate the design and performance of stand-alone hydrogen renewable energy systems. The analysis presented here is based on transient system simulation program (TRNSYS) with realistic ventilation load of a large store. Design of a hybrid energy system is site specific and depends on the resources available and the load demand.

MW급 PCS 성능검증용 배터리 모의장치 개발 (Development of Battery Simulator for Performance Verification of MW-class PCS)

  • 이종학;인동석;허남억;박영민;박기원;권병기
    • 전력전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.160-167
    • /
    • 2016
  • An energy storage system (ESS) is applied to increase the energy efficiency of large plants or buildings that consume much energy, to improve the power quality of power systems, and to stabilize renewable energy source such as photovoltaic or wind turbine. The ESS is composed of a power conditioning system (PCS) and an energy storage. The battery is used as the energy storage. The battery is needed to design and verify a hardware and control system of PCS. Usually, a battery simulator is used instead of a battery, which is costly and hard to manage. In this paper, the development of the battery simulator for performance verification of the MW-class PCS is described. The battery simulator simulates the charging and discharging characteristics of batteries to design and verify the hardware and control system of PCS.

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue life

  • Kong, C.D.;Bang, J.H.;Jeong, J.C.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2002년도 제18회 학술발표대회 논문초록집
    • /
    • pp.88-89
    • /
    • 2002
  • The aims of this study is to realize the structural design for development of a medium scale E-glass/epoxy composite wind turbine blade for a 750KW class horizontal axis wind turbine system. In this study, the various load cases specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads such as aerodynamic and centrifugal loads, loads due to accumulation of ice, hygro-thermal and mechanical loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade were peformed using tile finite element method(FEM). In the structural design, the acceptable blade structural configuration was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable in any various load cases Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design fond and the fatigue.

  • PDF

분산전원 출력 smoothing에 관한 연구 (A Study on Distributed Generation Output Smoothing)

  • 류기환;신희상;강병욱;채희석;이보배;추동욱;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.328-329
    • /
    • 2011
  • To promote the introduction of wind power conversion systems, which have an unstable power output, the adoption of energy storage system is being considered to mitigate variations of wind power output. This paper presents the results of analyzed data obtained by the wind power output smoothing tests.

  • PDF

Maximum Power Point Tracking in PMSG Using Fuzzy Logic Algorithm

  • ;이홍희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2009년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.135-138
    • /
    • 2009
  • In this paper, a novel maximum power point tracking (MPPT) for a PMSG-based variable speed wind power system is proposed using the fuzzy logic algorithm. The control algorithm is developed based on the normal hill climb searching (HCS) method, commonly used in wind energy conversion systems (WECS). The inputs of fuzzy-based controller are the derivations of DC output power and the step size of DC/DC converter duty cycles. The main advantages of the proposed MPPT method are no need to measure the wind velocity and the generator rotational speed. As such, the control algorithm is independent of turbine characteristics, achieving the fast dynamic responses with non-linear fuzzy systems. The effectiveness of the proposed MPPT strategy has been verified through the simulated results.

  • PDF

Enhanced Proportional-Resonant Current Controller for Unbalanced Stand-alone DFIG-based Wind Turbines

  • Phan, Van-Tung;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.443-450
    • /
    • 2010
  • An enhanced control strategy for variable-speed unbalanced stand-alone doubly-fed induction generator-based wind energy conversion systems is proposed in this paper. The control scheme is applied to the rotor-side converter to eliminate stator voltage imbalance. The proposed current controller is developed based on the proportional-resonant regulator, which is implemented in the stator stationary reference frame. The resonant controller is tuned at the stator synchronous frequency to achieve zero steady-state errors in rotor currents without decomposing the positive and negative sequence components. The computational complexity of the proposed control algorithm is greatly simplified, and control performance is significantly improved. Finally, simulations and experimental results are presented to verify the feasibility and the robustness of the proposed control scheme.

Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part II : 구조 건전성 평가 (Multi-MW Class Wind Turbine Blade Design Part II : Structural Integrity Evaluation)

  • 김범석
    • 대한기계학회논문집B
    • /
    • 제38권4호
    • /
    • pp.311-320
    • /
    • 2014
  • 풍력터빈 블레이드는 바람의 운동에너지를 기계적 에너지로 변환하는 장치로써 풍력발전시스템의 출력성능, 에너지변환효율, 하중 및 동적 안정성에 영향을 미칠 수 있기 때문에 주요부품으로 분류된다. 따라서 최적의 블레이드 설계결과를 얻기 위해서는 시스템 특성이 고려된 공력-구조 통합설계가 중요하며, 국제표준 또는 인증기관의 가이드라인에 따른 설계평가를 통해 구조건전성의 검증이 요구된다. 본 연구에서는 블레이드 설계 인증 시 요구되는 평가항목 및 판정기준에 대한 상세해설과, (사)한국선급의 인증기준에 따른 2 MW 급 블레이드(KR40.1b)에 대한 설계평가 결과를 제시하였다. 유한요소 해석에 의한 극한 강도, 좌굴 안정성, 한계 허용 팁 변형과 누적 손상 법에 의한 피로 강도 해석결과가 검토되었으며, KR40.1b 블레이드는 모든 평가항목에 대한 구조 건전성을 만족하는 것으로 확인되었다.

A New Random SPWM Technique for AC-AC Converter-Based WECS

  • Singh, Navdeep;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.939-950
    • /
    • 2015
  • A single-stage AC-AC converter has been designed for a wind energy conversion system (WECS) that eliminates multistage operation and DC-link filter elements, thus resolving size, weight, and reliability issues. A simple switching strategy is used to control the switches that changes the variable-frequency AC output of an electrical generator to a constant-frequency supply to feed into a distributed electrical load/grid. In addition, a modified random sinusoidal pulse width modulation (RSPWM) technique has been developed for the designed converter to make the overall system more efficient by increasing generating power capacity and reducing the effects of inter-harmonics and sub-harmonics generated in the WECS. The technique uses carrier and reference waves of variable switching frequency to calculate the firing angles of the switches of the converter so that the three-phase output voltage of the converter is very close to a sine wave with reduced THD. A comparison of the performance of the proposed RSPWM technique with the conventional SPWM demonstrated that the power generated by a turbine in the proposed approximately increased by 5% to 10% and THD reduces by 40% both in voltage and current with respect to conventional SPWM.

피치각을 고려한 풍력발전기 출력특성 시뮬레이션 모델의 응용 (Simulation of Output Power Variation in Wind Energy Conversion System due to Pitch Angle Change)

  • 송승호;정병창
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.260-262
    • /
    • 2006
  • 본 논문에서는 블레이드 피치각 변동을 포함한 풍력발전기 출력특성 시뮬레이션 모델을 개발하였으며, 피치각 변동이 필요한 경우를 각각 비상정지, 기동원활, 출력제한의 3가지 사례 연구를 통해 개발된 모델의 검증 수행하였다. 비상정지의 상황에서 풍력발전기의 출력특성을 모의하였고, 초기 정지 상태에서 블레이드 기동을 위한 초기 피치각 설정 및 변동하는 회전 속도에 맞는 블레이드 변동 지령 값을 구현하였으며, 정격 풍속이상에서 피치각을 감소시키는 제어기를 구현하여 정격이상의 출력 발생이 제한되는 것을 시뮬레이션을 통하여 확인하였다.

  • PDF

A Study on the Modeling and Design of Single Phase Induction Generators

  • Kim Cherl-Jin;Lee Kwan-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.331-336
    • /
    • 2005
  • With increasing emphasis on non-conventional energy systems and autonomous power generation, development of improved and appropriate generating systems has recently taken on greater significance. This paper describes the performance analysis of a single phase self-excited induction generator (SEIG), suitable for autonomous/standby power systems. The system is also appropriate for wind energy systems and small portable systems. Both windings of the induction machine, the main and the auxiliary, are utilized. One winding will be devoted to the supply excitation current only, by being connected to the excitation capacitor, while the load is connected across the other winding. As the design of excitation, the minimum of self-excited capacitor connected auxiliary winding is determined as the suitable value using a circuit equation of auxiliary winding. For the steady state analysis, the equivalent circuit of the single-phase induction generators is used as a basis for modeling using the double-revolving field theory. The validity of the designed generator system is confirmed by experimental and computed results.