DOI QR코드

DOI QR Code

Multi-MW Class Wind Turbine Blade Design Part II : Structural Integrity Evaluation

Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part II : 구조 건전성 평가

  • Kim, Bum Suk (New & Renewable Energy Research Team, Korean Register of Shipping)
  • 김범석 ((사)한국선급 신재생에너지연구팀)
  • Received : 2013.08.20
  • Accepted : 2014.02.10
  • Published : 2014.04.01

Abstract

Rotor blades are important devices that affect the power performance, efficiency of energy conversion, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. When a design is complete, a design evaluation should be performed to verify the structural integrity of the proposed blade in accordance with international standards or guidelines. This paper presents a detailed exposition of the evaluation items and acceptance criteria required for the design certification of wind turbine blades. It also presents design evaluation results for a 2-MW blade (KR40.1b). Analyses of ultimate strength, buckling stability, and tip displacement were performed using FEM, and Miner's rule was applied to evaluate the fatigue life of the blade. The structural integrity of the KR40.1b blade was found to satisfy the design standards.

풍력터빈 블레이드는 바람의 운동에너지를 기계적 에너지로 변환하는 장치로써 풍력발전시스템의 출력성능, 에너지변환효율, 하중 및 동적 안정성에 영향을 미칠 수 있기 때문에 주요부품으로 분류된다. 따라서 최적의 블레이드 설계결과를 얻기 위해서는 시스템 특성이 고려된 공력-구조 통합설계가 중요하며, 국제표준 또는 인증기관의 가이드라인에 따른 설계평가를 통해 구조건전성의 검증이 요구된다. 본 연구에서는 블레이드 설계 인증 시 요구되는 평가항목 및 판정기준에 대한 상세해설과, (사)한국선급의 인증기준에 따른 2 MW 급 블레이드(KR40.1b)에 대한 설계평가 결과를 제시하였다. 유한요소 해석에 의한 극한 강도, 좌굴 안정성, 한계 허용 팁 변형과 누적 손상 법에 의한 피로 강도 해석결과가 검토되었으며, KR40.1b 블레이드는 모든 평가항목에 대한 구조 건전성을 만족하는 것으로 확인되었다.

Keywords

References

  1. Kim, B. S., Kim, W. J., Lee, S. L., Bae, S. Y. and Lee, Y. H., 2013, "Development and Verification of a Performance Based Optimal Design Software for Wind Turbine Blades," Renewable Energy, 54, pp. 166-172. https://doi.org/10.1016/j.renene.2012.08.029
  2. Lee, S. H., Cho, K. S. and Park, J. S., 2009, "Structural Analysis and Verification Test of 3 MW Wind Turbine Blade," KWEA Autumn Conference.
  3. Gurit, 2012, Product catalogue.
  4. Korean Register of Shipping, 2008, Technical Guidelines for Wind Turbines.
  5. International Electrotechnical Commission, 2005, IEC 61400-1 Wind turbines - Part1 : Design requirements, 3rd edition.
  6. Puck, A. and Schurmann, H., 1998, "Failure Analysis of FRP Laminates by means of Physically based Phenomenological Models," Composites Science and Technology, 58, pp. 1045-1067. https://doi.org/10.1016/S0266-3538(96)00140-6
  7. Korean Register of Shipping, 2008, Technical Guidelines for Wind Turbines, pp.127-128.
  8. Korean Register of Shipping, 2008, Technical Guidelines for Wind Turbines, pp.104-114.
  9. Mahmood M., Shokrieh and Roham R., 2006, "Simulation of Fatigue Failure in a Full Composite Wind Turbine Blade," Composite Structures, 74, pp. 334-339.
  10. Herbert, J. S. and John, F. M., 2005, "Optimized Goodman Diagram for the Analysis of Fiberglass Composites used in Wind Turbine Blades," AIAA-2005-0196.
  11. Det Norske Veritas (DNV), 2010, Design and Manufacturing of Wind Turbine Blades-offshore and onshore Wind Turbines, DNV-DS-J102, pp.66-70.

Cited by

  1. Development of Dual Sensor for Prognosticating Fatigue Failure of Mechanical Structures vol.40, pp.8, 2016, https://doi.org/10.3795/KSME-A.2016.40.8.721