DOI QR코드

DOI QR Code

Multi-MW Class Wind Turbine Blade Design Part I : Aero-Structure Design and Integrated Load Analysis

Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part I : 공력-구조 설계 및 통합하중해석

  • Kim, Bum Suk (New & Renewable Energy Research Team, Korean Register of Shipping)
  • 김범석 ((사)한국선급 신재생에너지연구팀)
  • Received : 2013.08.08
  • Accepted : 2014.03.04
  • Published : 2014.04.01

Abstract

A rotor blade is an important device that converts kinetic energy of wind into mechanical energy. Rotor blades affect the power performance, energy conversion efficiency, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. This study examined the general blade design procedure for a wind turbine system and aero-structure design results for a 2-MW class wind turbine blade (KR40.1b). As suggested above, a rotor blade cannot be designed independently, because its ultimate and fatigue loads are highly dependent on system operating conditions. Thus, a reference 2-MW wind turbine system was also developed for the system integrated load calculations. All calculations were performed in accordance with IEC 61400-1 and the KR guidelines for wind turbines.

풍력터빈 블레이드는 바람의 운동에너지를 기계적 에너지로 변환하는 장치로써 풍력발전시스템의 출력성능, 에너지변환효율, 하중 및 동적 안정성에 영향을 미칠 수 있기 때문에 주요부품으로 분류된다. 따라서 최적의 블레이드 설계결과를 얻기 위해서는 시스템 특성이 고려된 공력-구조 통합설계가 중요하다. 본 연구에서는 풍력터빈 시스템과의 상호작용이 고려된 블레이드 설계절차를 제안하였고, 2 MW 급 블레이드(KR40.1b)의 공력-구조 통합 설계결과를 제시하였다. 또한 전술한 바와 같이 로터 블레이드에 작용하는 극한하중 및 피로하중은 시스템 운전조건에 따라 가변적이므로 시스템통합하중해석을 위한 2 MW 풍력발전시스템 모델링을 수행하였으며, IEC 61400-1 및 (사)한국선급의 풍력발전기술기준에 따라 수행된 하중해석결과를 제시하였다.

Keywords

References

  1. Tony, B., Nick, J., David, S. and Ervin, B., 2011, Wind Energy Handbook, Willey, pp. 335-336.
  2. Garrad Hassan, GL, 2012, "Evolution of Wind Technology," SUPERGEN Wind Energy Technologies Consortium Phase 2.
  3. EWEA, 2008, Wind Energy - The Facts, Earthscan, London, pp. 80.
  4. Kim, B. S., Kim, W. J., Bae, S. Y., Park, J. H. and Kim, M. E., 2011, "Aerodynamic Design and Performance Analysis of Multi-MW Class Wind Turbine Blade," J. of Mech. Sci. and Tech, Vol. 25, Issue 8, pp. 1995-2002. https://doi.org/10.1007/s12206-011-0521-x
  5. Kim, B. S., Kim, W. J., Lee, S. L., Bae, S. Y. and Lee, Y. H., 2013, "Development and Verification of a Performance based Optimal Design Software for Wind Turbine Blades," Renewable Energy, 54, pp. 166-172. https://doi.org/10.1016/j.renene.2012.08.029
  6. ECN, 2007, Aerodynamic Table Generator v3.1 User Manual, ECN.
  7. Snel, H., Houwink, R. and Piers, W. J., 1992, "Sectional Prediction of 3D Effects for Separated Flow on Rotating Blade," 18th European Rotorcraft Forum.
  8. Kim, B. S., Kim, W. J. and Kim, M. E., 2011, "Software Development for the Optimum Design and Performance Analysis of a Large Wind Turbine Blade," Proc. of Korean Soc. Mech. Eng.
  9. Tony, B., Nick, J., David, S. and Ervin, B., 2011, Wind Energy Handbook, Willey, pp. 64-66.
  10. Gurit, 2013, Wind Energy Handbook - 2.Wind Turbine Blade Structural Engineering, pp. 15-16.
  11. Kent, S., 2002, "Blade Manufacturing Improvement Project: Final Report," SANDIA Report, SAND-2002-3101.
  12. Lin, H. C., 2011, "Lay up Analyzing of a Carbon/ Glass Hybrid Composite Wind Turbine Blade using Finite Element Analysis," Applied Mechanics and Materials, Vol. 87, pp. 49-54. https://doi.org/10.4028/www.scientific.net/AMM.87.49
  13. Kim, T. Y., Su, H. M. and Wang, B. W., 2011, "Development of Glass-fabric Composite Wind Turbine Blade," Advanced Materials Research, Vol. 308-310, pp. 2482-2485. https://doi.org/10.4028/www.scientific.net/AMR.308-310.2482
  14. Lekou, D. J., 2010, "Scaling Limits & Costs regarding WT Blades," Project Upwind Delivarable - 3.4.3.
  15. Griffith, D. T. and Thomas, D. A., 2011, "The Sandia 100-meter all Glass Baseline Wind Turbine Blade: SNL100-00," SANDIA Report, SAND2011 - 3779.
  16. Kooijman, H., 1996, "Bending-Torsion Coupling of a Wind Turbine Rotor Blade," ECN-I-96-060.
  17. German Wind Energy Association, 2010, "Wind Energy Market 2010/2011," BWE, pp. 30-45.
  18. Tong, W., 2010, Wind Power Generation and Wind turbine Design, WIT Press, pp. 73-87.
  19. GL-Garrard Hassan, 2011, GH-Bladed 4.10 User Manual.
  20. EWEA, 2008, Wind Energy - The Facts, Earthscan, London, pp. 84-85.
  21. International Electrotechnical Commission, 2010, IEC 61400-1/A1 Wind turbines - Part1 : Design requirements.
  22. Korean Register of Shipping, 2008, Technical Guidelines for Wind Turbines.