• Title/Summary/Keyword: Wind design

Search Result 2,601, Processing Time 0.029 seconds

Conceptual Design of Moored Floating Meterological Buoy with LiDAR (LiDAR가 탑재된 계류된 부유식 기상 부이의 개념 설계)

  • Kim, Jeongrok;Lee, Hyebin;Cho, Il-Hyoung;Kyong, Nam-Ho;Boo, Sung-Youn
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.325-334
    • /
    • 2017
  • This paper reports the conceptual design process for a floating metocean data measurement system (FMDMS) for measuring wind information at sea. The FMDMS consists of three circular pontoons, columns, and a deck, which the LiDAR (lighting detection and ranging) is installed on. The dynamics of the mooring lines and motion responses of the FMDMS were analyzed using commercial codes such as WAMIT and OrcaFlex. One design criterion of the developed FMDMS was to maintain the motion responses as small as possible to enhance the LiDAR's accuracy. Starting with the preliminary design parameters such as the FMDMS's principal dimensions, weight, and important parameters of mooring system, we checked whether the FMDMS met the design requirements at each design stage, and then made modifications as necessary. The developed FMDMS showed a large pitch behavior for a small heave motion.

A Study on Fluctuating Wind Profile in CFD Simulation for Evaluating Wind Load (CFD 시뮬레이션을 이용한 풍하중 산정 시 변동풍속 프로파일에 관한 연구)

  • Jeon, Doo-Jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.51-59
    • /
    • 2021
  • In this paper, the effect of the turbulence intensity in across-wind direction on the wind load in CFD(Computational fluid dynamics) simulation was analyzed. 'Ansys fluent' software was used for CFD simulation. And the fluctuating wind speed applied to the simulation was generated according to Korean Design Standard and Von Karman wind turbulence model. The turbulence intensity in across-wind direction for simulation was applied from 0 to 100% of the turbulence intensity in along-wind direction. The analysis results showed that the turbulence intensity in across-wind direction had a particularly great effect on the wind load in across-wind direction.

Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements

  • Aly, Aly Mousaad;Gol-Zaroudi, Hamzeh
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.99-117
    • /
    • 2020
  • This paper focuses on the processes of wind flow in atmospheric boundary layer, to produce realistic full scale pressures for design of low-rise buildings. CFD with LES turbulence closure is implemented on a scale 1:1 prototype building. A proximity study was executed computationally in CFD with LES that suggests new recommendations on the computational domain size, in front of a building model, apart from common RANS-based guidelines (e.g., COST and AIJ). Our findings suggest a location of the test building, different from existing guidelines, and the inflow boundary proximity influences pressure correlation and reproduction of peak loads. The CFD LES results are compared to corresponding pressures from open jet, full scale, wind tunnel, and the ASCE 7-10 standard for roof Component & Cladding design. The CFD LES shows its adequacy to produce peak pressures/loads on buildings, in agreement with field pressures, due to its capabilities of reproducing the spectral contents of the inflow at 1:1 scale.

Optimal Design of Direct-Driven Wind Generator Using Mesh Adaptive Direct Search(MADS) (MADS를 이용한 직접구동형 풍력발전기 최적설계)

  • Park, Ji-Seong;An, Young-Jun;Lee, Cheol-Gyun;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.48-57
    • /
    • 2009
  • This paper presents optimal design of direct-driven PM wind generator using MADS (Mesh Adaptive Direct Search). Optimal design of the direct-driven PM Wind Generator, combined with MADS and FEM (Finite Element Method), has been performed to maximize the Annual Energy Production (AEP) over the whole wind speed characterized by the statistical model of the wind speed distribution. In particular, the newly applied MADS contributes to reducing the computation time when compared with Genetic Algorithm (GA) implemented with the parallel computing method.

Development of High-speed Shaft Coupling for 6 MW Class Offshore Wind Turbine (6 MW급 해상풍력발전기용 고속축커플링 개발)

  • Park, Soo-Keun;Lee, Hyoung-Woo
    • Journal of Wind Energy
    • /
    • v.10 no.4
    • /
    • pp.20-27
    • /
    • 2019
  • High-speed shaft coupling in a wind power system transmits power and absorbs variations in length and spindle dislocation between the gearbox and generator. Furthermore, the coupling has an insulation function that prevents electrical corrosion caused by the flow of the generator's current into the gearbox and prevents overload resulting from sudden power failure from being transferred to the gearbox. Its design, functions, and part verification are described in the IEC61400 and GL Guidelines, which specify that the part must have a durability life of 20 years or longer under distance variation and axial misalignment between the gearbox and the generator. This study presents the design of a high-speed coupling through composite stiffness calculation, structural analysis, and comparative analysis of test and theory to identify the characteristics of high-speed coupling for a large-capacity 6 MW wind power generator. A prototype was fabricated by optimizing the manufacturing process for each part based on the design, and the reliability of the fabricated prototype was verified by evaluating the performance of the target quantitative evaluation items.

Finite Element Analysis of Carbon Fiber Composite Sandwich Panels Subjected to Wind Debris Impacts

  • Zhang, Bi;Shanker, Ajay
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.436-442
    • /
    • 2022
  • Hurricanes and tornadoes are the most destructive natural disasters in some central and southern states. Thus, storm shelters, which can provide emergency protections for low-rise building residents, are becoming popular nowadays. Both FEMA and ICC have published a series of manuals on storm shelter design. However, the authors found that the materials for related products in the market are heavyweight and hard to deliver and install; renovations are necessary. The authors' previous studies found that lightweight and high-performance composite materials can withstand extreme wind pressure, but some building codes are designated in wind-borne debris areas. In these areas, wind debris can reach greater than 100 mph speed. In addition, the impact damage on the composite materials is an increasing safety issue in many engineering fields; some can cause catastrophic results. Therefore, studying composite structures subjected to wind debris impact is essential. The finite element models are set up using the software Abaqus 2.0 to conduct the simulations to observe the impact resistance behavior of the carbon fiber composite sandwich panels. The selected wood debris models meet the FEMA requirements. The outcome of this study is then employed in future lab tests and compared with other material models.

  • PDF

A review of the characteristics related to the platform design, transportation and installation of floating offshore wind turbine systems with a tension-leg platform (인장각형 부유식 해상풍력발전시스템의 하부 플랫폼 설계 및 운송·설치 관련 특성 고찰)

  • Hyeonjeong Ahn;Yoon-Jin Ha;Ji-Yong Park;Kyong-Hwan Kim
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.29-42
    • /
    • 2023
  • In this study, research and empirical cases of floating offshore wind turbine systems with a tension-leg platform are investigated, and hydrodynamic and structural characteristics according to platform shapes and characteristics during transportation and installation are confirmed. Most platforms are composed of pontoons or corner columns, and these are mainly located below the waterline to minimize the impact of breaking waves and supplement the lack of buoyancy of the center column. These pontoons and corner columns are designed with a simple shape to reduce manufacturing and assembly costs, and some platforms additionally have reinforcements such as braces to improve structural strength. Most of the systems are assembled in the yard and then moved by tugboat and installed, and some platforms have been developed with a dedicated barge for simultaneous assembly, transportation and installation. In this study, we intend to secure the basic data necessary for the design, transportation, and installation procedures of floating offshore wind turbine systems with a tension-leg platform.

Effects of Initial Conditions on Transient Responses in Dynamic Simulation of FOWT (초기 조건이 부유식 풍력터빈 동역학 해석의 과도응답에 미치는 영향)

  • Song, Jin-Seop;Rim, Chae-Whan;Moon, Seok-Jun;Nam, Yong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The IEC standard for onshore or offshore wind turbines requires additional dummy simulations (at least 5 s) for the transient responses due to initial conditions. An increase in the dummy time causes a considerable increase in the computational cost considering multiple design spirals with several thousand design load analysis cases. A time of 30 s is typically used in practical simulations for a wind turbine design with a fixed platform. However, 30 s may be insufficient for floating offshore wind turbines (FOWT) because the platforms have lower natural frequencies, and the transient responses will last much longer. In this paper, an initial condition application algorithm is implemented for WindHydro, and the appropriate dummy simulation time is investigated based on a series of dynamic simulations of a FOWT. As a result, it is found that more than 300 s is required for the platform to have stationary motion after the initial transient responses for the FOWT under the conditions considered.

The Development of High Wind Velocity/High Drying Time Hair Dryer using Computational Fluid Dynamics Analysis Method (전산유체역학(CFD) 분석법을 이용한 High Wind Velocity/High Drying Time 헤어드라이어의 개발)

  • Park, Soo-Hong;Park, Jong-Chan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.262-267
    • /
    • 2016
  • This paper describes a design of a hair drier to improve its performance. the performance of the hair drier can be improved by increasing the wind velocity of its discharge port. the design of the hair drier is accomplished by using the CFD. the validity of design results were verified by comparison with the dry change of the hair drier. In this paper, the initial condition of the applied hair drier is as follows, the number of the blade is 9, the diameter of the suction port is 40[mm], the tip clearance is 12.5[mm], the con angle is $28.5^{\circ}$ and the fan angle is 27.5R. From design results, the enhanced condition of the hair drier can be obtained as follows, the number of the blade is 3, the diameter of the suction port is 50[mm], the tip clearance is 10.5[mm], the con angle is $21.5^{\circ}$ and the fan angle is 75R. At the enhanced condition of the hair drier, the wind velocity of the hair drier is 29[%] increase, and the dry time is 40[%] increase compare to the initial condition of the hair drier.

Design of Mooring Lines of a Floating Offshore Wind Turbine in South Offshore Area of Jeju (제주 해양환경에 적합한 부유식 해상풍력발전기 계류선 설계)

  • Choung, Joonmo;Kim, Hyungjun;Jeon, Gi-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.300-310
    • /
    • 2014
  • This paper presents a mooring design procedure of a floating offshore wind turbine. The environment data of south offshore area of Jeju collected from Korea Hydrographic and Oceanographic Administration(KHOA) are used for hydrodynamic analyses as environmental conditions. We considered a semi-submersible type floating wind turbine based on Offshore Code Comparison Collaborative Continuation(OC4) DeepCWind platform and National Renewable Energy Laboratory(NREL) 5 MW class wind turbine. Catenary mooring with studless chain is chosen as the mooring system. Important design decisions such as how large the nomial sizes are, how long the mooring lines are, how far the anchor points are located, are demonstrated in detail. Considering ultimate limit state and fatigue limit state based on 100-year return period and 50-year design life, respectively, longterm predictions of breaking strength and fatigue are proposed.