DOI QR코드

DOI QR Code

Design of Mooring Lines of a Floating Offshore Wind Turbine in South Offshore Area of Jeju

제주 해양환경에 적합한 부유식 해상풍력발전기 계류선 설계

  • Choung, Joonmo (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Kim, Hyungjun (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Jeon, Gi-Young (Department of Creative Technology Research Team)
  • 정준모 (인하대학교 조선해양공학과) ;
  • 김형준 (인하대학교 조선해양공학과) ;
  • 전기영 (한국선급 창조기술연구팀)
  • Received : 2014.01.02
  • Accepted : 2014.05.15
  • Published : 2014.08.20

Abstract

This paper presents a mooring design procedure of a floating offshore wind turbine. The environment data of south offshore area of Jeju collected from Korea Hydrographic and Oceanographic Administration(KHOA) are used for hydrodynamic analyses as environmental conditions. We considered a semi-submersible type floating wind turbine based on Offshore Code Comparison Collaborative Continuation(OC4) DeepCWind platform and National Renewable Energy Laboratory(NREL) 5 MW class wind turbine. Catenary mooring with studless chain is chosen as the mooring system. Important design decisions such as how large the nomial sizes are, how long the mooring lines are, how far the anchor points are located, are demonstrated in detail. Considering ultimate limit state and fatigue limit state based on 100-year return period and 50-year design life, respectively, longterm predictions of breaking strength and fatigue are proposed.

Keywords

References

  1. Ansys, 2010. AQWA Reference Manual Release 13.0, USA, Ansys Inc.: Canonsburg, USA.
  2. Brommundt, M. Krause, L. Merz, K. & Muskulus, M., 2012. Mooring System Optimization for Floating Wind Turbines using Frequency Domain Analysis. Energy Procedia, 24, pp 289-296. https://doi.org/10.1016/j.egypro.2012.06.111
  3. Cho, Y. Cho, J. & Jeong W., 2013. Analysis of Effects of Mooring Connection Position on the Dynamic Response of Spar type Floating Offshore Wind Turbine. Transactions of the Korean Society of Noise and Vibration Engineering, 23(5), pp.407-413. https://doi.org/10.5050/KSNVE.2013.23.5.407
  4. Choung, J. Jeon, G.Y. Kim & Kim, Y., 2013. Study on Effective Arrangement of Mooring Lines of Floating-Type Combined Renewable Energy Platform. Journal of Ocean Engineering and Technology, 27(4), pp.22-32.
  5. Det Norske Veritas(DNV), 2010. Offshore Standard DNV-OS-E301 Position Mooring. DNV: Norway.
  6. Gueydon, S. & Weller, S., Study of a Floating Foundation for Wind Turbines. Journal of Offshore Mechanics and Arctic Engineering. 135(3), pp.031903-1.
  7. Jeon, S.H. Cho, Y.U. Seo, M.W. Cho, J.R. & Jeong, W.B., 2013. Dynamic Response of Floating Substructure of Spar-Type Offshore Wind Turbine with Catenary Mooring Cables. Ocean Engineering, 72, pp.356-364. https://doi.org/10.1016/j.oceaneng.2013.07.017
  8. Karimirad, M. & Moan, T., 2012. Feasibility of the Application of a Spar-Type Wind Turbine at a Moderate Water Depth. Energy Princidea, 24, pp.340-350.
  9. Korea Hydrographic and Oceanographic Administration(KHOA), 2012. Korea Real Time Database for NEAR-GOOS. [Online] Available at: [Accessed 26 Dec. 2013].
  10. Kvittema, M.I. Bachynski, E.E. & Moan, T., 2012. Effects of Hydrodynamic Modelling in Fully Coupled Simulations of a Semi-Submersible Wind Turbine. Energy Procedia, 24, pp.351-362. https://doi.org/10.1016/j.egypro.2012.06.118
  11. Lefebvre, S. & Collu, M., 2012. Preliminary Design of a Floating Support Structure for a 5MW Offshore Wind Turbine. Ocean Engineering, 40, pp.15-26. https://doi.org/10.1016/j.oceaneng.2011.12.009
  12. National Institute of Meteorological Research(NIMR), 2011. Weather Resource Maps. [Online] Available at: [Accessed 26 Dec. 2013].
  13. National Renewable Energy Laboratory (NREL), 2009. Technical Report NREL/TP-500-38060: Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical Report NREL/TP-500 -38060. NREL: USA.
  14. National Renewable Energy Laboratory (NREL), 2010a. Technical Report NREL/TP-500-47535: Definition of the Floating System for Phase IV of OC3. NREL: USA.
  15. National Renewable Energy Laboratory (NREL), 2010b. Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment. NREL: USA.
  16. National Renewable Energy Laboratory (NREL), 2012. Offshore Code Comparison Collaboration Continuation (OC4), Phase I . Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure. NREL: USA.
  17. Ma, Y. & Hu, Z., 2013. Dynamic analysis for a spar-type wind turbine under different sea states. Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering(OMAE), Nantes France, 9-14 June 2013, pp.1-7.
  18. Orcina, 2013. Orcaflex Manual Version 9.7a, Orcina Ltd.: Ulverstone UK.
  19. Principle Power, 2012. WindFloat brochure. [Online] Available at: [Accessed August 2012].
  20. Ronald, L. Jonkman, J. Robertson, A. & Chokani, N., 2013. The effect of second-order hydrodynamics on floating offshore wind turbines. Energy Procedia, 35, pp.253-264. https://doi.org/10.1016/j.egypro.2013.07.178
  21. Shin, H.K. & Kim K.M., 2011. Motion Analysis of 5-MW Floating Offshore Wind Turbine. Journal of Ocean Engineering and Technology, 25(5), pp.64-68 https://doi.org/10.5574/KSOE.2011.25.5.064
  22. Shin, H. & Lee, W.S., 2013. Model test of an OC4 semi-submersible floating offshore wind turbine. Proceeding of Spring Meeting of the Society of Naval Architects of Korea(SNAK), Jeju South Korea, 23-25 May 2013, pp.413

Cited by

  1. A Study on Effect of Aerodynamic Loads on Mooring Line Responses of a Floating Offshore Wind Turbine vol.52, pp.1, 2015, https://doi.org/10.3744/SNAK.2015.52.1.43
  2. Extreme Mooring Analysis of Turret Moored LNG-FSRU vol.53, pp.5, 2016, https://doi.org/10.3744/SNAK.2016.53.5.435