• Title/Summary/Keyword: Wind Turbine Rotor Blade

Search Result 180, Processing Time 0.027 seconds

Aerodynamic Design of 10 kW-level HAWT Rotor Blades (10 kW급 수평축 풍력 터빈 로터 블레이드의 공력 설계)

  • Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.884-890
    • /
    • 2007
  • The procedure for the aerodynamic design of the rotor blades for 10 kW-level HAWT (horizontal axis wind turbine) has been investigated to be practiced systematically. The approximately optimal shape was designed using an inverse method based on the momentum theory and the blade element method. The configuration was tested in the wind tunnel of the Korea Air Force Academy, and the data was compared with those obtained from the real system manufactured from the present design. From this research, the authors established the systematic technolo for wind turbine blades, and set up the technical procedure which can be extended for the future design of middle and large sized wind turbines.

Analysis of Flows around the Rotor-Blades as Rotating Body System of Wind Turbine (풍력 발전기의 Rotor-Blades 회전체 시스템 공력 해석)

  • Kim, Don-Jean;Kwag, Seung-Hyun;Lee, Kyong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.25-31
    • /
    • 2009
  • The most important component of wind turbine is rotor blades. The developing method of wind turbine was focused on design of rotor blade. By the way, the design of a rotating body is more decisive process in order to adjust the performance of wind turbine. For instance, the design allows the designer to specify the wind characteristics derived by topographical map. The iterative solver is then used to adjust one of the selected inputs so that the desired rotating performance which is directly related to power generating capacity and efficiency is achieved. Furthermore, in order to save the money for manufacturing the rotor blades and to decrease the maintenance fee of wind power generation plant, while decelerating the cut-in speed of rotor. Therefore, the design and manufacturing of rotating body is understood as a substantial technology of wind power generation plant development. The aiming of this study is building-up the profitable approach to designing of rotating body as a system for the wind power generation plant. The process was conducted in two steps. Firstly, general designing and it’s serial testing of rotating body for voltage measurement. Secondly, the serial test results above were examined with the CFD code. Then, the analysis is made on the basis of amount of electricity generated by rotor-blades and of cut-in speed of generator.

Aerodynamic Load Analysis for 1MW HAWT Blade According to IEC61400-1 (바람조건에 따른 1MW급 수평축 풍력터빈 브레이드의 하중 해석)

  • Kim, Jin;Ryu, Ki-Wahn;Lee, Chang-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.409-413
    • /
    • 2007
  • To assure the structural integrity for the hub and low speed shaft (LSS) of the drive train, it is necessary to obtain the ultimate aerodynamic loads acting on the wind turbine blade. The aim of this study is to predict the time histories of 3 forces and 3 moments at the hub and the LSS based on the design load case of the IEC 61400-1. From the calculated results most of the load components have rotor revolution frequency whereas thrust and torque of the LSS show blade passage frequency. It turns out that the EWM wind condition involves the maximum ultimate loads at both hub and LSS of the horizontal axis wind turbine.

  • PDF

Forced Vibration and Loads Analysis of Large-scale Wind Turbine Blades Considering Blade Bending and Torsion Coupling (굽힘 및 비틀림 연성 효과를 고려한 대형 풍력 터빈 블레이드의 강제 진동 및 하중 해석)

  • Kim, Kyung-Taek;Park, Jong-Po;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.256-263
    • /
    • 2008
  • The assumed modes method is developed to derive a set of linear differential equations describing the motion of a flexible wind turbine blade and to propose an approach to investigate the forced responses result from various wind excitations. In this work, we have adopted Euler beam theory and considered that the root of the blade is clamped at the rigid hub. And the aerodynamic parameters and forces are determined based on Blade Element Momentum (BEM) theory and quasi-steady airfoil aerodynamics. Numerical calculations show that this method gives good results and it can be used fur modeling and the forced vibration analysis including the coupling effect of wind-turbine blades, as well as turbo-machinery blades, aircraft propellers or helicopter rotor blades which may be considered as straight non-uniform beams with built-in pre-twist.

  • PDF

Along-wind simplified analysis of wind turbines through a coupled blade-tower model

  • Spagnoli, Andrea;Montanari, Lorenzo
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.589-608
    • /
    • 2013
  • A model is proposed to analyse the along-wind dynamic response of upwind turbines with horizontal axis under service wind conditions. The model takes into account the dynamic coupling effect between rotor blades and supporting tower. The wind speed field is decomposed into a mean component, accounting for the well-known wind shear effect, and a fluctuating component, treated through a spectral approach. Accordingly, the so-called rotationally sampled spectra are introduced for the blades to account for the effect of their rotating motion. Wind forces acting on the rotor blades are calculated according to the blade element momentum model. The tower shadow effect is also included in the present model. Two examples of a large and medium size wind turbines are modelled, and their dynamic response is analysed and compared with the results of a conventional static analysis.

An Investigation on Nonlinear Characteristics of Aerodynamic Torque for Variable-Speed Variable-Pitch Wind Turbine (가변속도-가변피치 풍력터빈의 공기역학적 토크의 비선형 특성에 관한 고찰)

  • Lim, Chae-Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.29-34
    • /
    • 2011
  • Aerodynamic torque of wind turbine is highly nonlinear due to the nonlinear interactions between wind and blade. The aerodynamic nonlinearity is represented by nonlinear power and torque coefficients which are functions of wind speed, rotational speed of rotor, and pitch angle of blade. It is essential from the viewpoint of understanding and analysis of dynamic characteristics for wind turbine to linearize the aerodynamic torque and define aerodynamic nonlinear parameters as derivatives of aerodynamic torque with respect to the three parameters. In this paper, a linearization method of the aerodynamic torque from power coefficient is presented through differentiating it by the three parameters. And steady-state values of three aerodynamic nonlinear parameters according to wind speed are obtained and their nonlinear characteristics are investigated.

Loads of NREL Phase VI Rotor at Hub in Yawed Conditions (요 상태에서 NREL Phase VI 로터의 허브 중심 하중 예측)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.841-847
    • /
    • 2019
  • Time series data of 6-component loads were computed for a horizontal axis wind turbine rotor in yawed operating conditions with both rotating and non-rotating coordinate systems fixed at a center of a rotor hub. In this study, a well-known 20 kW class of the NREL Phase VI rotor was used for a model wind turbine, and this paper focuses on the yaw moments and over-turning moments for the operating wind speed range between 6 to 25 m/s. Unsteady blade element momentum theorem was adopted to get the aerodynamic loads acting on the wind turbine rotor. Computed 6-component loads using the developed UBEM code were compared with those using the NREL FAST program. From the computed results, both yaw and over-turning moments would be basic inputs to determine not only the specification of yawing mechanism but also the design condition of foundation.

Individual Pitch Control of NREL 5MW Wind Turbine Blade for Load Reduction (NREL 5MW 풍력터빈의 블레이드 하중 저감을 위한 개별피치제어)

  • La, Yo-Han;Nam, Yoon-Su;Son, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1427-1432
    • /
    • 2012
  • As the size of a wind turbine increases, the rotor diameter increases. Rotor blades experience mechanical loads caused by the wind shear and the tower shadow effect. These mechanical loads reduce the life of the wind turbine. Therefore, with increasing size of the wind turbine, wind turbine control system design for the mitigation of mechanical loads is important. In this study, Individual Pitch Control in introduced for reducing the mechanical loads of rotor blades, and a simulation for IPC performance verification is discussed.

Fluid-structure interaction analysis on a low speed 200 W-class gyromill type vertical axis wind turbine rotor blade (200 W급 자이로밀형 수직축 풍력터빈 로터 블레이드 유체-구조 연성 해석)

  • Cho, Woo-Seok;Choi, Young-Do;Kim, Hyun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.344-350
    • /
    • 2013
  • The purpose of this study is to examine the structural stability of a low speed 200 W class gyromill type vertical axis wind turbine system. For the analysis, a commercial code is adopted. The pressure distribution on the rotor blade surface is examined in detail. In order to perform unidirectional FSI(Fluid-Structure Interaction) analysis, the pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition. The rotational speed and gravitational force of wind turbine are also considered. The results of FSI analysis show that the wind turbine reveals an enough structural margin. The maximum structural displacement occurs at trailing edge of blade and the maximum stress occurs at the strut.

Study for the Power Characteristic of NREL Phase VI Blade considering Wind Shear (Wind Shear를 고려한 NREL Phase VI 블레이드의 출력특성연구)

  • Park, Sangjun;Lee, Kyungseh;Kim, Youngchan;Park, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.56.2-56.2
    • /
    • 2011
  • As rotor blade of a wind turbine becomes larger to satisfy the economic efficiency for offshore wind farm, the numerical analysis considering wind profile is getting emphasized. In this paper, the study for the power characteristic of a wind turbine is carried out using NREL phase VI wind turbine applied wind profile. The experimental data of NASA Ames wind tunnel for inflow velocity 7m/s is used and the numerical result is obtained by using CFD commercial solver(FLUENT).

  • PDF