DOI QR코드

DOI QR Code

Loads of NREL Phase VI Rotor at Hub in Yawed Conditions

요 상태에서 NREL Phase VI 로터의 허브 중심 하중 예측

  • Ryu, Ki-Wahn (Department of Aerospace Engineering, Jeonbuk National University)
  • Received : 2019.10.09
  • Accepted : 2019.11.27
  • Published : 2019.12.01

Abstract

Time series data of 6-component loads were computed for a horizontal axis wind turbine rotor in yawed operating conditions with both rotating and non-rotating coordinate systems fixed at a center of a rotor hub. In this study, a well-known 20 kW class of the NREL Phase VI rotor was used for a model wind turbine, and this paper focuses on the yaw moments and over-turning moments for the operating wind speed range between 6 to 25 m/s. Unsteady blade element momentum theorem was adopted to get the aerodynamic loads acting on the wind turbine rotor. Computed 6-component loads using the developed UBEM code were compared with those using the NREL FAST program. From the computed results, both yaw and over-turning moments would be basic inputs to determine not only the specification of yawing mechanism but also the design condition of foundation.

본 연구에서는 요 오차가 있는 상태에서의 수평축 풍력터빈 로터에 작용하는 시간에 따른 6분력 하중변동을 로터 허브에 중심을 둔 회전 및 비회전 좌표계에 대해서 수치해석 하였다. 수치해석을 위한 모형은 설계 사양이 상세히 공개된 20 kW급의 NREL Phase VI 로터로 선택하였으며, 설계 풍속 구간에 대해 요 및 전도 모멘트를 중점적으로 분석하였다. 해석을 위한 방법은 비정상 블레이드 요소이론을 적용하였으며, 그 방법을 이용하여 개발된 프로그램의 6분력 하중에 대한 수치해석 결과는 NREL의 FAST 프로그램의 해석 결과와 비교하여 검증을 완료하였다. 하중 해석 결과를 토대로 요 작동 상태인 수평축 풍력터빈 시스템의 요 및 전도 모멘트는 요 부속 장치의 사양 결정 및 지지부위의 기초 설계를 위해 중요한 기본 정보로 활용될 것으로 기대된다.

Keywords

References

  1. Bakhshi, R., and Sandborn, P., "The effect of yaw error on the reliability of wind turbine blades," Proceeding of the ASME 2016 Power and Energy Conference, PowerEnergy 2016-59151, June 26-30, 2016, Charlotte, North Carolina, USA.
  2. Mamidipudi, P., Dakin, E., Hopkins, A., Belen, F. C., and Leishman, Jr. G., Yaw control: the forgotten controls problem, Catch the Wind Inc. Manassas, Virginia, USA, Mar. 8, 2011.
  3. Kim, M. G., and Dalhoff, P. H., "Yaw systems for wind turbines - overview of concepts, current challenges and design methods," Journal of Physics: Conference Series 524, 2014, pp. 1-10.
  4. Bossanyi, E. A., GH Bladed theory manual, Garard Hassan and Partners, 2003.
  5. Jonkman, J. M., and Buhl Jr., M. L., FAST user's guide, NREL/EL-500-29798, NREL, March, 2004.
  6. Ryu, K. W., Kang, S. H., Seo, Y. H., and Lee, W. R., "Prediction of aerodynamic loads for NREL Phase VI wind turbine blade in yawed condition," International Journal of Aeronautical and Space Sciences, Vol. 72, No. 2, 2016, pp. 157-166.
  7. Ryu, K. W., and Seo, Y. H., "Wind loads of 5 MW horizontal-axis wind turbine rotor in parked condition," Journal of Wind Enineering Institute of Korea, Vol. 22, No. 4, 2018, pp. 163-169.
  8. Glauert, H., The elements of airfoil and airscrew theory. Cambridge University Press, New York, 1926.
  9. Hansen, M. O. L., Sorensen, J. N., Vousinas, S., Sorensen,, N., and Madsen, H. Aa., "State of the art in wind turbine aerodynamics and aeroelasticity," Progress in Aerospace Sciences, Vol. 42, 2006, pp. 285-330. https://doi.org/10.1016/j.paerosci.2006.10.002
  10. IEC 61400-1: Wind turbine generator systems - Part 1: safety requirements, International Electrotechnical Commission, Geneva, Swiss, 2005.
  11. Du, Z., and Selig, M. S., "A 3-D stall-delay model for horizontal axis wind turbine performance prediction," AIAA-98-0021, 1998.
  12. Prandtl, L., and Betz, A., "Vier Abhandlungen zur Hydrodynamik und Aerodynamik," Gottinger Nachr. Gottingen; 1927, pp. 88-92.
  13. Viterna, L. A., and Corrigan, R. D., "Fixed pitch rotor performance of large horizontal axis wind turbines," Proceedings, Workshop on Large Horizontal Axis Wind Turbine, NASA, P-2203, DOE Publication, CONF-810752, Cleveland, OH: NASA Lewis Research Center, 1981, pp. 69-85.
  14. Oye, S., "Unsteady wake effects caused by pitch-angle changes," IEA R&D WECS Joint Action on Aerodynamics of Wind Turbines, Technical University of Denmark, October 1986.
  15. Schepers, J. G., "Final Report of IEA Annex XX: Comparison between calculations and measurements on a wind turbine in yaw in the NASA-Ames wind tunnel," ECN-E-07-072, 2007.
  16. Hand, M. M., Simms, D. A., Fingersh, L. J., Jager, D. W., Cotrell, J. R., Schreck, S., and Larwood, S. M., Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns, NREL/TP-500-29955, Golden, CO: National Renewable Energy Laboratory, December 2001.
  17. Ramsay, R. R., Hoffmann, M. J., and Gregorek, G. M, "Effects of grit roughness and pitch oscillations on the S809 airfoil," Revised (12/99), NREL/TP-442-7817, 1995.