• Title/Summary/Keyword: Wind Speed and Direction Predicting

Search Result 29, Processing Time 0.021 seconds

CALPUFF and AERMOD Dispersion Models for Estimating Odor Emissions from Industrial Complex Area Sources

  • Jeong, Sang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This study assesses the dispersion and emission rates of odor form industrial area source. CALPUFF and AERMOD Gaussian models were used for predicting downwind odor concentration and calculating odor emission rates. The studied region was Seobu industrial complex in Korea. Odor samples were collected five days over a year period in 2006. In-site meteorological data (wind direction and wind speed) were used to predict concentration. The BOOT statistical examination software was used to analyze the data. Comparison between the predicted and field sampled downwind concentration using BOOT analysis indicates that the CALPUFF model prediction is a little better than AERMOD prediction for average downwind odor concentrations. Predicted concentrations of AERMOD model have a little larger scatter than that of CALPUFF model. The results also show odor emission rates of Seobu industrial complex area were an order of 10 smaller than that of beef cattle feed lots.

Prediction of ship power based on variation in deep feed-forward neural network

  • Lee, June-Beom;Roh, Myung-Il;Kim, Ki-Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.641-649
    • /
    • 2021
  • Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the ship power must be predicted prior to route planning. For this purpose, a numerical method using test results of a model has been widely used. However, predicting ship power using this method is challenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-forward neural network (DFN) is used to predict ship power using deep learning methods that involve data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should be configured. In this study, the input data are configured using ocean environmental data (wave height, wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various treatments have been used to improve the prediction accuracy. First, ocean environmental data related to wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed using a combination comprising five hyperparameters (number of hidden layers, number of hidden nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to analyze the effect of the sea state and ship operational status by categorizing it into several models. The performances of various prediction models are compared and analyzed using the DFN in this study.

Development of Predicting Function for Wind Wave Damage based on Disaster Statistics: Focused on East Sea and Jeju Island (재해통계기반 풍랑피해액예측함수 개발 : 동해안, 제주를 중심으로)

  • Choo, Tai-Ho;Kwon, Jae-Wook;Yun, Gwan-Seon;Yang, Da-Un;Kwak, Kil-Sin
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.18 no.2
    • /
    • pp.165-172
    • /
    • 2017
  • In current stage, it is hard to predict the scale of damage caused by natural disaster and it is hard to deal with it. However, in case of disaster planning level, if it is possible to predict the scale of disaster then quick reaction can be done which will reduce the damage. In the present study, therefore, function of wind wave damage estimation among various disaster is developed. Damage of wind wave and typhoon in eastern and Jeju coastal zone was collected from disaster report (1991~2014) published by Ministry of Public Safety and Security and to reflect inflation rate, 2014 damage cost was converted. Also, wave height, wind speed, wave direction, wave period, etc was collected from Meteorological Administration and Korea Hydrographic and Oceanographic Administration web site. To reflect the characteristic of coastal zone when wave damage occurs, CODI(Coastal Disaster Index), COSI(Coastal Sensitivity Index), CPII(Coastal Potential Impact Index) published by Korea Hydrographic and Oceanographic Agency in 2015 were used. When damage occurs, function predicting wind wave damage was developed through weather condition, regional characteristic index and correlation of damage cost.

Prediction of Wildfire Spread and Propagation Algorithm for Disaster Area (재난 재해 지역의 산불 확산경로와 이동속도 예측 알고리즘)

  • Koo, Nam-kyoung;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1581-1586
    • /
    • 2016
  • In this paper, we propose a central disaster monitoring system of the forest fire. This system provides the safe-zone and detection to reduce the suppression efforts. In existing system, it has a few providing the predicting of wildfire spread model and speed through topography, weather, fuel factor. This paper focus on the forest fire diffusion model and predictions of the path identified to ensure the safe zone. Also we have considering the forest fire of moving direction and speed for fire suppression and monitering. The proposed algorithm could provide the technique to analyze the attribute information that temperature, wind, smoke measured over time. This proposed central observing monitoring system could provide the moving direction of spred out forecast wildfire. This observing and monitering system analyze and simulation for the moving speed and direction forest fire, it could be able to predict and training the forest fire fighters in a given environment.

Estimation of Odor Emissions from Industrial Sources and Their Impact on Residential Areas using the AERMOD Dispersion Model (AERMOD 모델을 이용한 산단 지역 악취 배출량 및 주거지역 영향 범위 평가)

  • Jeong, Sang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • In this study, the AERMOD dispersion model was used for predicting odor concentrations and back-calculating industrial area source odor emission rate. The studied area was Sihwa industrial complex in Korea. Odor samples were collected during two days over a year period in 2009. The comparison between the predicted and observed concentrations indicates that the AERMOD model could fairly well predict average downwind odor concentrations. The results show odor emission rates of Sihwa industrial complex area source were ranged from 0.204 to 2.320 $OUms^{-1}$ (average 0.476 $OUms^{-1}$). The results also show wind speed and direction are important parameters to the odor dispersion.

Machine Learning Based Model Development and Optimization for Predicting Radiation (방사선량률 예측을 위한 기계학습 기반 모델 개발 및 최적화 연구)

  • SiHyun Lee;HongYeon Lee;JungMin Yeom
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.551-557
    • /
    • 2023
  • In recent years, radiation has become a socially important issue, increasing the need for accurate prediction of radiation levels. In this study, machine learning-based models such as Multiple Linear Regression (MLR), Random Forest (RF), XGBoost, and LightGBM, which predict the dose rate by time(nSv h-1) by selecting only important variables, were used, and the correlation between temperature, humidity, cumulative precipitation, wind direction, wind speed, local air pressure, sea pressure, solar radiation, and radiation dose rate (nSv h-1) was analyzed by collecting weather data and radiation dose rate for about 6 months in Jangseong, Jeollanam-do. As a result of the evaluation based on the RMSE (Root Mean Squared Error) and R-Squared (R-Squared coefficient of determination) scores, the RMSE of the XGBoost model was 22.92 and the R-Squared was 0.73, showing the best performance among the models used. As a result of optimizing hyperparameters of all models using the GridSearch method and comparing them by adding variables inside the measuring instrument, it was confirmed that the performance improved to 2.39 for RMSE and 0.99 for R-Squared in both XGBoost and LightGBM.

Forecasting of Various Air Pollutant Parameters in Bangalore Using Naïve Bayesian

  • Shivkumar M;Sudhindra K R;Pranesha T S;Chate D M;Beig G
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.196-200
    • /
    • 2024
  • Weather forecasting is considered to be of utmost important among various important sectors such as flood management and hydro-electricity generation. Although there are various numerical methods for weather forecasting but majority of them are reported to be Mechanistic computationally demanding due to their complexities. Therefore, it is necessary to develop and build models for accurately predicting the weather conditions which are faster as well as efficient in comparison to the prevalent meteorological models. The study has been undertaken to forecast various atmospheric parameters in the city of Bangalore using Naïve Bayes algorithms. The individual parameters analyzed in the study consisted of wind speed (WS), wind direction (WD), relative humidity (RH), solar radiation (SR), black carbon (BC), radiative forcing (RF), air temperature (AT), bar pressure (BP), PM10 and PM2.5 of the Bangalore city collected from Air Quality Monitoring Station for a period of 5 years from January 2015 to May 2019. The study concluded that Naive Bayes is an easy and efficient classifier that is centered on Bayes theorem, is quite efficient in forecasting the various air pollution parameters of the city of Bangalore.

Impact of Meteorological Wind Fields Average on Predicting Volcanic Tephra Dispersion of Mt. Baekdu (백두산 화산 분출물 확산 예측에 대기흐름장 평균화가 미치는 영향)

  • Lee, Soon-Hwan;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.32 no.4
    • /
    • pp.360-372
    • /
    • 2011
  • In order to clarify the advection and dispersion characteristics of volcanic tephra to be emitted from the Mt. Baekdu, several numerical experiments were carried out using three-dimensional atmospheric dynamic model, Weather and Research Forecast (WRF) and Laglangian particles dispersion model FLEXPART. Four different temporally averaged meteorological values including wind speed and direction were used, and their averaged intervals of meteorological values are 1 month, 10 days, and 3days, respectively. Real time simulation without temporal averaging is also established in this study. As averaging time of meteorological elements is longer, wind along the principle direction is stronger. On the other hands, the tangential direction wind tends to be clearer when the time become shorten. Similar tendency was shown in the distribution of volcanic tephra because the dispersion of particles floating in the atmosphere is strongly associated with wind pattern. Wind transporting the volcanic tephra is divided clearly into upper and lower region and almost ash arriving the Korean Peninsula is released under 2 km high above the ground. Since setting up the temporal averaging of meteorological values is one of the critical factors to determine the density of tephra in the air and their surface deposition, reasonable time for averaging meteorological values should be established before the numerical dispersion assessment of volcanic tephra.

A Study on the Method of Air Quality Management Using TCM Model in Industrial Area (군산공업지역의 TCM모형을 적용한 대기오염물질 관리방안에 관한 연구)

  • 김영식;김석재;김동술
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.2
    • /
    • pp.1-10
    • /
    • 1990
  • This study was performed to evaluate a applicability of TCM(Texas Climatological Model) model to a industrial area sush as CUNSAN and a possibility to provide necessary informaitons for air quality management. The air pollutants were measured at 6 sampling sites of GUNSAN industrial area from june to july in 1989. The model was checked by comparing the observed data with estimated data. The meteorological data for wind direction and wind speed were obtained from the observatory station in GUNSAN. The results are summarized as follows. 1. Average concentrations of air pollutants at all sampling sites were SO$_{2}$ 0.011-0.019 ppm. NO$_{2}$ 0.012-0.017 ppm. CO 0.6-1.0 ppm. TSP 45.8-64.2 $\mu$g/m$^{3}$. 2. The emission amounts show that point source are in general higher than area source. 3. As a results of correlation analysis, relationship between SO$_{2}$ concentration in the observed value and estimated value showed positive significance.(r = 0.766) 4. The sulfer content of the 1.6% at present to 0.8%, which means a 53.3% reduction. By controlling stack height could be lowered 14.5%, but the effective way of emission control is use of the lower sulfer fuels than controlling stack height. 5. The ratio between SO$_{2}$ contration in the observed value and estimated value showed 1.05. There-fore, the TCM model was quite effective in predicting air quality in GUNSAN industrial area.

  • PDF

Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS (유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증)

  • Kim, C.H.;Na, J.G.;Park, C.J.;Park, J.H.;Im, C.S.;Yoon, E.;Kim, M.S.;Park, C.H.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.