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a b s t r a c t

Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the
ship power must be predicted prior to route planning. For this purpose, a numerical method using test
results of a model has been widely used. However, predicting ship power using this method is chal-
lenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this
problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-
forward neural network (DFN) is used to predict ship power using deep learning methods that involve
data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should
be configured. In this study, the input data are configured using ocean environmental data (wave height,
wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's
operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various
treatments have been used to improve the prediction accuracy. First, ocean environmental data related to
wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the
DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed
using a combination comprising five hyperparameters (number of hidden layers, number of hidden
nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to
analyze the effect of the sea state and ship operational status by categorizing it into several models. The
performances of various prediction models are compared and analyzed using the DFN in this study.
© 2021 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Research motivation

With stricter environmental regulations and increasing fuel
prices, economic routes that minimize the fuel oil consumption
(FOC) of ships have garnered increasing interest. To plan a ship
route, it is necessary to predict the ship power, which is essential
for determining the ship's FOC (Roh, 2013; Lee et al., 2018). In
general, the method suggested in the ISO (International Organiza-
tion for Standardization) 15,016 (ISO 15016, 2015) is widely used to
predict ship power. However, it is known that this method is not
f Naval Architects of Korea.
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suitable for practical use because it fits well when the weather
condition is good (Kim and Roh, 2020; Kim et al., 2020c). Therefore,
a method that can predict ship power more accurately is
necessitated.

Traditionally, a numerical method using the results of a model
test has been widely used to predict ship power (Kristensen and
Lützen, 2012; Rakke, 2016). However, it is difficult to predict ship
power owing to the uncertainty of the model test. An onboard test
should be conducted to solve this problem. Nonetheless, it requires
considerable resources and time; hence, it is challenging to use
numerical methods to predict the power of operating ships. In
several studies, ship power was predicted using a data-driven
model (Ahlgren and Thern, 2018; Liang et al., 2019; Panapakidis
et al., 2020; Uyanik et al., 2019; Yoo and Kim, 2017). As data-
driven methods used for predicting ship power, two representa-
tive methods exist: regression analysis and deep learning methods.
Regression analysis is a method for identifying correlations
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between multiple variables. This method can rapidly generate a
prediction model for simple problems. Deep learning, a type of
machine learning based on artificial neural networks, is an effective
method for predicting data patterns. If sufficient training data are
available, deep learning can solve complex problems more effec-
tively than regression analysis. In addition, a deep learning model
can be tuned based on the complexity of a problem. Therefore, we
selected a deep learning model to predict ship power in this study.

1.2. Related studies

Numerical methods are typically used to predict ship power.
Rakke (2016) calculated the resistance of a ship using the
HoltropeMennen method (Holtrop and Mennen, 1982). Subse-
quently, they predicted the ship power and ship emissions.
Kristensen and Lützen (2012) predicted ship resistance and power
using the Harvaldmethod (Harvald,1992). Themethodsmentioned
above are not applicable to actual ships because they deduce ship
power from ship resistance. Therefore, data-driven models based
on ocean environmental data and ship operational data have
garnered significant attention recently. One of the traditional
representative data-driven methods is regression analysis. Yoo and
Kim (2017) predicted ship speed using linear regression analysis.
Using the predicted speed, the authors predicted the ship power.
Szelangiewicz and _Zelazny (2017) proposed an approximation
method using basic geometric parameters to predict ship power at
the initial design stage. Uyanik et al. (2019) predicted a ship's FOC
using multilinear regression (MLR) analysis. However, it is note-
worthy that when the prediction of ship power exhibits significant
nonlinearity, the use of the regression analysis method may be
restricted. Lang and Mao (2020) proposed a semi-empirical model
for predicting speed loss of the existing ship. For an accuratemodel,
wave reflection-induced resistance was additionally considered.

Therefore, ship power has been predicted using deep learning
models to overcome these limitations. Ahlgren and Thern (2018)
selected a prediction model based on data characteristics and
predicted a ship's FOC using AutoMachineLearning (AutoML).
Panapakidis et al. (2020) predicted a ship's FOC using long short-
term memory (LSTM), a type of deep-learning model primarily
used for time-series data. They developed several prediction
models by combining input data (ocean environmental data and
engine data). In addition, they optimized the model by analyzing
the accuracy of each model. Liang et al. (2019) used AIS (Automatic
Identification System) data, ship performance measurement data,
and weather data to predict ship power. They proposed a predictive
model using the MLP (Multi-Layer Perceptron) method. They fixed
the number of hidden layers to 3 and compared models with
various combinations of neurons when using MLP. In addition, they
compared the results with the prediction results of DNV GL.
However, they used only the fully connected layer, which is the
general structure of the MLP. Also, they only performed optimiza-
tion for a few hyperparameters, such as the learning rate and loss.
Abebe et al. (2020) used a decision tree regressor and four
ensemble methods to predict ship speed. And by comparing each
prediction result, it was confirmed that the extra tree regressor had
the best performance. Kim et al. (2020a) used the Support Vector
Regression (SVR) to predict the propulsion power of a ship. They
optimized the hyperparameters of the SVR model and also
improved the accuracy by preprocessing the data using Chauve-
net's criterion.

Therefore, in this study, five hyperparameters were optimized.
In addition, a prediction model considering various sea states and
ship operational statuses was developed by changing the configu-
ration of the DFN and k-means clustering. Table 1 shows a com-
parison of the characteristics of this study and other studies.
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2. Method for predicting ship power

Herein, we propose a model for predicting ship power. The
model was developed using a DFN, a type of deep-learning network
that effectively predicts numerical data. In this study, three types of
ship's operational data (draft, speed, and heading) and six types of
ocean environmental data (wave height, wave period, wave direc-
tion, wind speed, wind direction, and sea surface temperature)
were used to predict ship power. A total of 240,000 datasets for
13,000 TEU class container ships was used to train the model. In
addition, suitable hyperparameters were selected for each model
through hyperparameter optimization. In order to use the trained
model, nine types of input parameters at the desired time and
location, which are mentioned above, should be input to get the
ship power. The configuration of the DFN was changed and
analyzed based on the data characteristics. Finally, k-means clus-
tering was performed. In this section, the DFN configuration for
ship power prediction and a method for applying the various
treatments introduced above to the model are described.
2.1. Preprocessing of ocean environmental data

Among the ocean environmental data, those related towind and
waves (wave height, wave period, wave direction, wind speed, and
wind direction) must be applied differently in the ship's stationary
state and operating state because they are vectors. Therefore, ocean
environmental data related towind and waves were converted into
relative values for the velocity of the ship.

The wave height and wave period used in this study were
calculated from the wave spectra. The wave spectrum must be
converted in consideration of the ship's velocity to calculate the
relative ocean environmental data for the ship (SNAME, 1989).
According to ship's velocity, the formulas for converting the wave
spectrum are shown in Equations (1) and (2) (SNAME, 1989).

we ¼
����w�
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g

�
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In Eqs. (1) and (2),we is the encounter frequency, U0 the velocity
of the ship, m0 the angle between the ship and wave, Sz(w) the
existing wave spectrum, and Sz(we) the wave spectrum considering
the ship's velocity. The formulas for calculating wave height and
wave period in the converted wave spectrum are shown in Eqs.
(3)e(5) (SNAME, 1989).
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ð∞
0

wnSjðwÞdw (3)

H1=3 ¼4
ffiffiffiffiffiffiffiffi
moj

p
(4)

T ¼2p

ffiffiffiffiffiffiffiffi
m0j

m2j

s
(5)

In Eqs. (3)e(5), H1/3 is the significant wave height, T the mean
wave period, and m the wave spectrum moment. We define H1/3

and T as the preprocessed wave height and wave period, respec-
tively. Meanwhile, the wind speed and wind direction were con-
verted directly using the ship's velocity. In this study, the converted
ocean environmental data were used as input data for training the
DFN model.
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2.2. DFN for predicting ship power

Deep learning models can be classified into various models
based on the data characteristics and problem types. Among them,
the DFN is primarily used for predicting numerical data. Because
ship power is calculated based on various inputs, the DFN is
regarded as the most suitable network. A DFN is composed of an
input layer, a hidden layer, and an output layer. Each layer is
composed of many nodes and nodes connected by a weight. In
general, ocean environmental and ship operational data are related
to the ship power (Liang et al., 2019). Therefore, the input layer of
the DFN was composed of ocean environmental data and the ship's
operational data. The ship power was selected as the label (output
data). Fig. 1 shows the two configurations of the DFNmodel used in
this study. In general, the DFN model was configured as DFN1 to
consider the association of all input data. In this study, DFN2 was
configured and analyzed simultaneously to evaluate the learning
case by considering the two types of input separately.

The training of the DFN involves updating the hidden layer
weights (qj) to minimize the loss function (L). During this process,
the model performance of the model differs significantly owing to
the hyperparameters. Therefore, hyperparameter optimization
should be performed to fine-tune the models. This is because even
when the same DFNmodel is used, the accuracy varies significantly
depending on the combination of hyperparameters. Fig. 2 shows
the five hyperparameters used for the optimization in this study.

Among the five hyperparameters optimized in this study, the
first and second hyperparameters were the numbers of hidden
layers and hidden nodes. As the problem becomes more complex,
the feature to be expressed increases. Therefore, it is generally
advantageous to increase the numbers of hidden layers and hidden
nodes. However, if the complexity of the model increases exces-
sively, overfitting may occur; hence, appropriate adjustments are
necessary. The third hyperparameter is the learning rate (a), which
determines the amount of weight to be updated during training. If
the learning rate is extremely high, then the final solution will be
difficult to obtain. On the contrary, if the learning rate is extremely
Fig. 1. DFN st
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low, it may fall into the local minimum and require a long training
time. The fourth hyperparameter is dropout (Hinton et al., 2012),
which is a method of limiting nodes participating in training to
prevent overfitting. Dropout significantly affects the prevention of
overfitting (regularization). However, because the training nodes
are limited, the training time may be longer. The last hyper-
parameter was the gradient optimizer. The gradient optimizer up-
dates the hidden layer's weight during training, and the model
performance differs significantly depending on the gradient opti-
mizer. In this study, three gradient optimizers were used: stochastic
gradient descent (SGD) (Bottou and Bousquet, 2009), root mean
square propagation (RMSProp) (Ruder, 2016), and adaptive
moment estimation (ADAM) (Kingma and Ba, 2015). The SGD is the
typically used gradient optimize. RMSProp and ADAM are gradient
optimizers that reflect the inertia of the previous weights to weight
updates.

To optimize these hyperparameters, grid search and random
search methods are primarily used (James and Yoshua, 2012). The
grid search method evaluates the model performance based on
combinations of all hyperparameters within a specified range and
selects hyperparameters that reflect the best performance among
them. The random search method differs from the grid search
method in that it evaluates the model performance by randomly
selecting combinations rather than using all combinations. It is
known that the random search method performs searches more
efficiently in a limited time than the grid search method. The grid
search method, which is more accurate than the random search
method, was used in this study as it does not require a significant
amount of time to train the prediction model proposed herein.
2.3. k-means clustering

Ship power is significantly affected by the sea state and opera-
tional status of the ship. Perera and Mo (2018) confirmed that the
ship power exhibited different patterns based on the sea state.
Previous studies indicated the necessity to appropriately partition
data based on the sea state and ship operational status. Hence, we
ructure.



Fig. 2. Hyperparameters of DFN

Fig. 3. k-means clustering process.
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clustered the training data using k-means clustering (Lloyd, 1982),
which is a type of unsupervised learning for autonomous clus-
tering, in which the user determines the data and the number of
clusters. In k-means clustering, Eq. (6) (Lloyd, 1982) was used as an
objective function to determine whether clustering is successful.

J¼
Xk
n¼1

X
xi2cn

kxi � unk2 (6)

In Eq. (6), un is the centroid of the nth cluster, and xi indicates the
data belonging to each cluster. As shown in Eq. (6), k-means clus-
tering involves identifying the centroid that minimizes the objec-
tive function. Fig. 3 shows the k-means clustering process. The first
step is to determine the number of clusters and then arbitrarily
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determine each cluster's centroid (Figs. 3e1). After determining the
centroid, each datum is assigned to the appropriate cluster
(Figs. 3e2). Subsequently, the centroid of each cluster is adjusted by
recalculating the objective function (Fig. 3e). Finally, clustering is
performed again based on the newly defined centroid (Figs. 3e4).
The process above is repeated until the objective function
converges.
3. Verification

3.1. Comparison model

Because it was difficult to obtain the actual ship data of a 13,000
TEU class container ship used in the application, we trained the



Fig. 4. Process of ship power prediction using gray box model (Kim and Roh, 2020).

Table 1
Summary of related studies.

Study Prediction
target

Input data Prediction method

Prediction algorithm Preprocessing Hyperparameter optimization Clustering

Rakke (2016) Ship
emission

AIS data, world fleet data,
ship & engine data

HoltropeMennen method

Kristensen and
Lützen (2012)

Ship
power

Ship data Harvald method

Yoo and Kim
(2017)

Ship
power

Ship & engine data, ocean
environmental data

Linear regression
analysis

No N/A No

Szelangiewicz and
_Zelazny (2017)

Ship
power

Geometric parameters Approximation method

Uyanik et al.
(2019)

FOC Ship & engine data, ocean
environmental data

Multilinear regression
analysis

No N/A No

Lang and Mao
(2020)

Ship speed
loss

Geometric parameters,
ocean environmental data

Semi-empirical model

Ahlgren and Thern
(2018)

FOC Engine data Linear regression
analysis,
AutoML

No No No

Liang et al. (2019) Ship
power

Ship operational data,
ocean environmental data

MLP,
Physics-based model

Yes Loss, learning rate, number of estimators, minimum
sample split

No

Panapakidis et al.
(2020)

FOC Ship operational data,
ocean environmental data

LSTM No No No

Abebe et al. (2020) Ship speed Ship operational data,
ocean environmental data

Decision tree regressor,
ensemble methods

Yes Yes No

Kim et al., 2020a,
2020b, 2020c

Ship
power

Ship and engine data, ocean
environmental data

SVR Yes No No

This study Ship
power

Ship operational data,
ocean environmental data

DFN Yes Number of hidden layers, number of hidden nodes,
learning rate, dropout, gradient optimizer

Yes

Table 2
Hyperparameters of DFN model for verification.

Number of hidden layers Number of hidden nodes Learning rate Dropout Gradient optimizer

5 40 0.001 0 ADAM
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DFN using the ship power generated using the ISO 15016 method.
To verify this method, we compared the prediction model of a 4600
TEU class container ship and the DFN model proposed herein. The
prediction model of a 4600 TEU class container ship was developed
using the gray box model (GBM) (Samsung Heavy Industries, 2017).
The ocean environmental and ship operational data were used as
input data for the GBM, and the output of the GBM was the ship
speed, ship power, and ship FOC. Fig. 4 shows the process for pre-
dicting ship power using the GBM.

ISO 15016 is originally a method for calibrating the performance
of a ship using sea trial data. Since the sea trial is usually done in
calm water, it is relatively accurate when weather conditions are
good. However, it has the disadvantage of being inaccurate when
weather conditions are relatively bad (Kim and Roh, 2020).
Nevertheless, according to the study of Kim and Roh (2020), it can
be seen that the fuel consumption error is relatively low at an
average error of about 3 %, even under realistic weather conditions.
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Therefore, we tried to verify the efficiency of our method by
comparing both the GBM (gray box model) and ISO 15016methods.
3.2. Verification results

To train the DFN model of 4600 TEU class container ships, ocean
environmental and ship operational data were used in the input
layer. The ship power generated using the ISO 15016 method was
used as the label. Table 2 shows the hyperparameters of the DFN
used to predict the power of a 4600 TEU class container ship.

Table 3 shows a comparison of the mean absolute errors (MAEs)
of the ship powers predicted using the ISO 15016 method (ship
power from the ISO) and DFN (ship power from the DFN), as well as
that of the actual ship power (ship power from the GBM).

The average error between the ship powers obtained from the
ISO and DFN was 426 kW (5.91 %), and the average error between
the ship power obtained from the GBM and DFN was 462 kW



Table 3
Result of ship power prediction.

Comparison target Output data MAE (%)

Ship power by the ISO Ship power of the DFN 426 KW (5.91 %)
Ship power by the GBM Ship power of the DFN 462 KW (6.41 %)
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(6.41 %). After comparing the MAE obtained from the DFN with
those from the ISO and the GBM, a difference of 0.5 % was
confirmed. Owing to this slight difference of 0.5 %, the DFN model
based on the ISO data can be used to replace the model that was
used to create the actual data.
4. Applications

We analyzed the accuracy of the prediction model for a 13,000
TEU class container ship based on a DFN. For training, a total of
240,000 datasets (period: January 1, 2017 to December 31, 2017) of
13,000 TEU class container ships were used. The datasets included
ocean environmental data and ship's operational data (draft, speed,
and heading) used for the input layer of the DFN, and the ship
power used for the label. The ocean environmental data were ob-
tained from the National Oceanic and Atmospheric Administration,
and the ship operational data were obtained from an automatic
identification system (AIS) (IMO, 2015). The ship power data were
generated via the ISO 15016 method using ocean environmental
and ship operational data. To evaluate the accuracy of the predic-
tion model, the dataset was segmented into training, validation,
and test sets. A training set is a dataset used to train a model, for
which 80 % of the total dataset was used. A validation set is used to
evaluate the model performance based on the hyperparameters, for
which 10 % of the total dataset was used. A test set is used to
evaluate the model's final performance, for which 10 % of the total
dataset was used. In addition, because the input data ranges were
different, they were converted to a value between 0 and 1 through
min-max scaling.
4.1. Hyperparameter optimization

To select the optimal prediction model, hyperparameter opti-
mization was performed, as described in Section 2.2. For the five
hyperparameters, each tuning set was defined using through trial-
and-error. Table 4 shows the tuning set for the hyperparameter
optimization.

The model performance was evaluated based on the average
validation loss. The validation loss was set as themean square error,
which a widely used indicator for evaluating model performance.
The validation loss means the loss function value for the validation
dataset. First of all, in this study, in order to prevent the overfitting
of the prediction model, 10 % of the total data was used as the
validation dataset as mentioned above. Unlike the training dataset,
the validation dataset is not directly used in the training process but
is used for monitoring and serves to evaluate how accurately the
current model actually predicts. Therefore, by identifying the
Table 4
Hyperparameter set for optimization.

Hyperparameters Tuning set

Number of hidden layers 3, 4, 5, 6, 7
Number of hidden nodes 10, 20, 30, 40
Learning rate 0.0001, 0.001, 0.01
Dropout 0, 0.25, 0.5
Gradient optimization ADAM, SGD, RMSProp

Fig. 5. Validation loss based on hyperparameters.
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Table 5
Result of hyperparameter optimization.

Model Number of hidden layers Number of hidden nodes Learning rate Dropout Gradient optimizer

DFN1 6 40 0.001 0 RMSProp
DFN2 4 40 0.001 0 RMSProp

Table 6
Comparison of prediction results.

Prediction method Pre-processing MAE (%)

MLR X 2754 KW (5.12 %)
MLR-P O 2698 KW (5.01 %)
SVR X 2326 KW (4.32 %)
SVR-P O 2338 KW (4.34 %)
DFN1 X 1951 KW (3.62 %)
DFN1-P O 1949 KW (3.62 %)
DFN2 X 1898 KW (3.52 %)
DFN2-P O 1876 KW (3.49 %)
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validation loss, we can indirectly assess whether the current model
is overfitted. Fig. 5 shows the average validation loss of DFN1 and
DFN2 based on each hyperparameter.

After analyzing the accuracy by changing the number of hidden
layers, it was confirmed that the average validation loss increased
with the number of hidden layers. If the number of hidden layers is
extremely high, then the number of unnecessary features will in-
crease. Therefore, an accurate prediction will not be possible.
Furthermore, we changed the hidden node and analyzed its accu-
racy. The average validation loss was the lowest when the number
of hidden nodes was the smallest. However, no significant pattern
was observed. The learning rate confirmed that the average vali-
dation loss was the lowest when the learning rate was 0.001. This
result was obtained because an optimal solution could not be
identified when a high value was selected; furthermore, it would
fall into the local minimum when an extremely small value is
selected. Subsequently, it was confirmed that the average valida-
tion loss increased with the dropout. In general, dropout is known
to affect model regularization. However, the model proposed
herein this study did not require regularization. Finally, by
comparing the gradient optimizers, the SGD indicated the highest
average validation loss, whereas ADAM and RMSProp indicated the
lowest validation loss. It appeared that ADAM and RMSProp
reduced the risk of falling into a local minimum.

In addition to the results shown in Fig. 5, the validation loss was
calculated for all combinations of hyperparameters, as shown in
Table 4, and the results were compared. A total of 540 cases
(5 � 4 � 3 � 3 � 3) were compared. Table 5 shows the optimal
hyperparameter results for DFN1 and DFN2. Comparing the overall
results for hyperparameter optimization, it was discovered that the
validation loss of DFN2 was generally lower than that of DFN1. This
may be because the configuration of DFN2 is more suitable for
predicting ship power than using a combination of
hyperparameters.
Table 7
Result of k-means clustering (k ¼ 3).

Clustering parameter Cluster 1 Cluster 2 Cluster 3

Beaufort scale 0e4 5e7 8e12
Ship speed (knot) 0.1e12.3 12.4e18.0 18.1e29.7
Ship draft (m) 5.3e9.3 9.4e13.3 13.4e21.1

Table 8
Result of prediction along with clusters.

Number of clusters Clustering criteria MAE (%)

3 Beaufort scale 1925 KW (3.58 %)
4 2193 KW (4.07 %)
5 2024 KW (3.76 %)
6 2301 KW (4.27 %)
3 Ship speed 1950 KW (3.62 %)
4 1978 KW (3.67 %)
5 1996 KW (3.71 %)
6 2245 KW (4.17 %)
3 Ship draft 1884 KW (3.50 %)
4 2511 KW (4.67 %)
5 2034 KW (3.78 %)
6 2158 KW (4.01 %)
4.2. Comparison with other prediction methods

We compared DFN models with other data-driven methods
described in Section 1.2. The DFN models proposed herein were
compared with prediction models using MLR and support vector
regression (SVR). MLR (Draper and Smith, 1998), a representative
regression analysis used for numerical prediction, predicts the re-
sults by the linear operation of independent variables. SVR (Vapnik,
2000), a regression analysis based on a support vector machine, is
primarily used to predict nonlinear data. Table 6 shows a compar-
ison of the accuracy of the prediction model using the DFN and
prediction models using MLR and SVR. MLR-P, SVR-P, DFN1-P, and
DFN2-P denote models trained using preprocessed input data. As
described in Section 2.1, the preprocessing was carried out to
convert ocean environmental data given as absolute values into
relative values for the ship. Since this is to prepare the dataset
before training, it does not affect the learning time.

As shown in Table 6, the DFN model (DFN2-P) is more accurate
by 1.51 % (MLR) and 0.83 % (SVR). Comparing DFN1 and DFN2, it can
be confirmed that it is more efficient to classify data using domain
knowledge and then learn than to learn all the data as a fully
connected layer at once. The complexity of predicting ship power
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cannot be expressed using a general regression model; hence, the
DFN model is more suitable for predicting ship power. In addition,
comparing the predicted results using DFN1-P and DFN2-P, the
error of DFN2-P decreased by 0.13 % compared with that of DFN1-P.
Hence, the configuration of DFN2 is more suitable for predicting
ship power.
4.3. Effects of k-means clustering

Ship power is affected significantly by the sea state and ship
operational status. They are typically classified based on the ship
speed, ship draft, and Beaufort scale (wind speed) (Bialystocki and
Konovessis, 2016). Therefore, k-means clustering was performed
based on the three parameters above. Table 7 shows the results of
k-means clustering for three clusters based on each parameter.

As shown in Table 7, k-means clustering was performed with k
values set to 3, 4, 5, and 6. Next, the accuracy of the prediction
model for each cluster was analyzed. Table 8 shows the prediction
results for the ship power using k-means clustering. In Table 8, the
MAE shown is the average MAE of each cluster model. For example,
if the DFN model is segmented into three clusters, then the
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accuracy of the model is calculated as the average prediction ac-
curacy of each cluster.

As the number of clusters increased, each cluster's training data
decreased; hence, the accuracy decreased. Among the prediction
results using k-means clustering, the best result (1884 KW (3.50 %))
was obtained when the data were segmented into three clusters
based on the ship draft. However, the accuracy did not improve
significantly compared with the results of DFN2-P in Section 4.2. As
described above, the low accuracy might be attributed to the
insufficient training data of each cluster as the cluster increased.
Furthermore, it might have occurred because the effect to be ob-
tained through k-means clustering had already been reflected in
the DFN.
5. Conclusions and future works

Herein, we proposed a DFN model, which is a data-driven
method, to predict ship power. In addition, four methods were
used to improve the prediction accuracy, and a comparative anal-
ysis was performed. For training the DFN model, data from 13,000
TEU class container ships were used. By performing four treat-
ments, the accuracy of the DFN model was improved. The first
treatment was input data preprocessing. It was discovered that the
prediction accuracies of the preprocessed and general prediction
models were similar. The model with the most significant impact of
preprocessing was MLR (0.11 % difference), and the model with the
most negligible impact was DFN1 (no difference in accuracy).
Therefore, it is concluded that using preprocessed data is efficient
in terms of accuracy, but it is unnecessary to use it in terms of
practicality. The second treatment was changing the DFN model
configuration. When the DFN was changed based on the data
characteristics (DFN2), the prediction accuracy increased slightly
by 0.13 %. Hence, it was confirmed that the model configuration
based on the data characteristics wasmore appropriate. In addition,
the prediction results were compared with the regression analysis
methods. The prediction error of the DFN model decreased by
1.51 % and 0.83 % compared with the results predicted using MLR
and SVR, respectively. Hence, the DFN model exhibited better
performance than the existing numerical prediction method. The
third treatment was hyperparameter optimization. Among the
various elements constituting the DFN, five hyperparameters that
significantly affected the prediction result were defined, and opti-
mization was performed. It was discovered that the hyper-
parameters that exhibited significant patterns were dropout and
the number of hidden layers. The prediction accuracy was the best
when dropout was not used, and the number of hidden layers was
small. The last treatment was k-means clustering. As a result of k-
means clustering, the prediction accuracy was the best when the
data were segmented into three clusters for the ship draft, and the
prediction error was 3.50 %. Therefore, k-means clustering did not
significantly affect the power prediction of a 13,000 TEU class
container ship.

To develop a more realistic prediction model in the future, the
data of ship power during actual operation, including weather data
(Kim et al., 2020a, Kim et al., 2020b, Kim et al., 2020c), must be
obtained to be used as a label. Furthermore, a model suitable for
predicting ship power should be developed by further improving
the structure of a simple DFN model.
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