When predicting unsteady flow and pressure fields around a structure in a turbulent boundary layer by Large Eddy Simulation (LES), velocity fluctuations of turbulence (inflow turbulence), which reproduce statistical characteristics of the turbulent boundary layer, must be given at the inflow boundary. However, research has just started on development of a method for generating inflow turbulence that satisfies the prescribed turbulence statistics, and many issues still remain to be resolved. In our previous study, we proposed a method for generating inflow turbulence and confirmed its applicability by LES of an isotropic turbulence. In this study, the generation method was applied to a turbulent boundary layer developed over a flat plate, and the reproducibility of turbulence statistics predicted by LES computation was examined. Statistical characteristics of a turbulent boundary layer developed over a flat plate were investigated by a wind tunnel test for modeling the cross-spectral density matrix for use as targets of inflow turbulence generation for LES computation. Furthermore, we investigated how the degree of correspondence of the cross-spectral density matrix of the generated inflow turbulence with the target cross-spectral density matrix estimated by the wind tunnel test influenced the LES results for the turbulent boundary layer. The results of this study confirmed that the reproduction of cross-spectra of the normal components of the inflow turbulence generation is very important in reproducing power spectra, spatial correlation and turbulence statistics of wind velocity in LES.
We have developed a spherical FCT code in order to simulate the interaction of supernova remnants with stellar wind bubbles. We assume that the density profile of the supernova ejecta follows the Chevalier mode1(1982) where the outer portion has a power-law density distribution($\rho{\propto}\gamma^{-n}$) and the SN ejecta has a kinetic energy of $10^{51}$ ergs. The structure of wind bubble has been calculated with the stellar mass loss rate $\dot{M}=5\times10^{-6}M_{\odot}/yr$ and the wind velocity $\upsilon=2\times10^3$ km/s We have simulated seven models with different initial conditions In the first two models we computed the evolution of SNRs with n=7 and n=14 in the uniform medium The numerical results agree with the Chevalier's similarity solution at early times. When all of the power-law portion of the ejecta is swept up by the reverse shock, the evolution slowly converges to the Sedov-Taylor stage. There is not much difference between the two cases with different n's The other five models simulate SNRs produced inside wind bubbles. In model III, we consider the SN ejecta of 1.4 $M_{\odot}$ and the radius of bubble ~2.76 pc so that ratio of the mass $\alpha(=M_{W.S}/M_{ej}$ is 2. We follow the complex hydrodynamic flows produced by the interaction of SN shocks with stellar shocks and with the contact discontinuities, In the model III, the time scale for the SN shock to cross the wind shell $\tau_{cross}$ is similar to the time scale for the reverse shock to sweep the power-law density profile $\tau_{bend}$. Hence the SN shock crosses the wind shell. At late times SN shock produces another shell in the ambient medium so that we have a SNR with double shell structure. From the numerical results of the remaining models, we have found that when $\tau_{cross}/\tau_{bend}\leq2$, or equivalently when $\alpha\leq50$, the SNRs produced inside wind bubbles have double shell structure. Otherwise, either the SN shock does not cross the wind shell or even if it crosses at one time, the reverse shock reflected at the center accelerates the wind shell to merge into the SN shock Our results confirm the conclusion of Tenorio-Tagle et a1(1990).
In the present study, the wind characteristics were analyzed according to the time averages to evaluate the performance of small wind turbines required for the development of energy independent village. Measuring data of wind speed were recorded between January 2016 and April 2016 every second. Experimental data is averaged out using 5, 10, 15, 20 and 30 minute time steps. Throughout the experimental data analysis, 5 minutes averaged data is used to analyze the performance of the wind turbine, because it produces a minimum turbulence intensity in wind speed. The measuring power of the wind turbine is less than the designed value due to the unsteady nature wind of sudden changes in magnitude of wind speed and wind angle. Detailed wind conditions are also analysed using two variable Weibull probability density functions.
In the 1990s, four strong typhoons hit the Kyushu area of Japan and inflicted severe damage on power transmission facilities, houses, and so on. Maximum gust speeds exceeding 60 m/s were recorded in central Kyushu. Although the wind speeds were very high, the gust factors were over 2.0. No meteorological stations are located in mountainous areas, creating a deficiency of meteorological station data in the area where the towers were damaged. Since 1995 the authors have operated a network for wind measurement, NeWMeK, that measures wind speed and direction, covering these mountainous areas, segmenting the Kyushu area into high density arrays. Maximum gusts exceeding 70 m/s were measured at several NeWMeK sites when Typhoon Bart (1999) approached. The gust factors varied widely in southerly winds. The mean wind speeds increased due to effects of the local terrain, thus further increasing gust speeds.
Wind Turbines are becoming larger in size in order to improve economic efficiency through cost reduction, such as the construction of growth and power infrastructure of energy efficiency. It have requested the large-scale blade design and production. In the present study the new manufacture technique called a fabric-blade structure using spar, rib, and fabric membrane skin is introduced. The architectural membrane test method has been studied to be applied to the skin of the blade. The density and one-axis tensile tests of the architectural membrane materials are conducted to confirm the physical properties which are necessary to the structural designs and analyses of the wind turbine blade.
In accordance with Madrid and Kyoto Protocols, a 10kw wind turbine installed about 625m away from the King Sejong Station in the Antarctica has been in operation successfully. The current location of the wind turbine has different geographic surroundings from the previous candidate site considered in 2005 and that makes re-evaluation of wind resource at the current site including geographic effects necessary. Especially, strong wind flow derived by steep and complex terrain is dominant in the Antarctica so that computational flow analysis is required. The wind rose measured at the previous and current installation location are identical with strong meteorological correlation but prevailing directions of wind power density are different because of local wind acceleration due to complex terrain. Numerical analysis explains which effects brings this discordance between the two sites, and a design guideline required for additional wind turbine installation has been secured.
There has been increasing global interest in the environmental pollution problems produced by fossil fuel consumption and greenhouse gas emissions. In order to tackle these issues, new renewable energy such as solar, wind, bio gas, fuel cell and pressure retarded osmosis(PRO) have been developed extensively. Among these energy sources, PRO is one of the salinity gradient power generation methods. In PRO, energy is obtained by the osmotic pressure generated from the concentration difference between high and low concentration solutions separated by a semipermeable membrane. The development for high power density PRO membranes is imperative with the purpose of commercialization. This study investigates development of thin film composite PRO membrane and spiral wound module for high power density. Also, the influence of membrane backing layer on power density was identified, and the characteristic factors of PRO membranes was determined. Different backing layers were used to improve power density. As expected, the PRO membrane with more porous backing layer showed higher power density.
The proposed offshore wind farm projects, i.e., Mooudo offshore, Yeonggwang-Gochang offshore, Saemangeum offshore, Imjado offshore and Gadeokdo-Dadeapo offshore, were compared and analyzed using the Korea National Wind Mapand Wind Farm Suitability Assessment System developed by the Korea Institute of Energy Research. The suitability of the proposed areas was comprehensively assessed using geographic, economic constraints, wave condition and wind resource factors, but the focus of this paper was on the geographic constraints and wave conditions. Imjado had several geographical constraints, despite having a good wind power density, while Saemangeum had a relatively low wave height, shallow water depth, close substation and slow tidal current. It is anticipating that the present comparison and analysis could be used as reference guidelines when selecting and preparing the design of large-scale offshore wind farm in the near future.
In accordance with Madrid and Kyoto Protocols, a 10kW wind turbine installed about 625m away from the King Sejong Station in the Antarctica has been in operation successfully. The current location of the wind turbine has different geographic surroundings from the previous candidate site considered in 2005 and that makes re-evaluation of wind resource at the current site including geographic effects necessary. Especially, strong wind flow derived by steep and complex terrain is dominant in the Antarctica so that computational flow analysis is required. The wind rose measured at the previous and current installation location are identical with strong meteorological correlation but prevailing directions of wind power density are different because of local wind acceleration due to complex terrain. Numerical analysis explains which effects brings this discordance between the two sites, and a design guideline required for additional wind turbine installation has been secured.
This paper presents how to determine AEP(Annual Energy Production) by a small wind turbine in DuckjeokDo island. Evaluation of AEP is introduced to make a self-contained island including renewable energy sources of wind, solar, and tidal energy. To determine the AEP in DuckjeokDo island, a local wind data is analyzed using the annual wind data from Korea Institute of Energy Research firstly. After the wind data is separated in 12-direction, a mean wind speed at each direction is determined. And then, a small wind turbine power curve is selected by introducing the capacity of a small wind turbine and the energy production of the wind turbine according to each wind direction. Finally, total annual wind energy production for each small wind turbine can be evaluated using the local wind density and local energy production considering a mechanical energy loss. Throughout the analytic study, it is found that the AEP of DuckjeokDo island is about 2.02MWh/y and 3.47MWh/y per a 1kW small wind turbine installed at the altitude of 10 m and 21m, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.