• Title/Summary/Keyword: Wind Energy Production

Search Result 270, Processing Time 0.029 seconds

Study of Welding Toughness Characteristics on the Root-pass Welding Process of High Tensile Steel at Tower Production for Offshore Wind Power Generation (해상풍력 발전용 타워 제작시 고장력강재의 초층용접에 관한 용접특성 연구)

  • Jung, Sung-Myoung;Kim, Ill-Soo;Kim, Ji-Sun;Na, Hyun-Ho;Lee, Ji-Hye
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.349-353
    • /
    • 2012
  • As the world wind energy market grows rapidly, the productions of wind power generation equipment have recently increased, but manufacturers are not able meet this requirement. Particularly offshore wind energy industry is one of the most popular renewable energy sectors. To generalize welding processes, the welding automation is considered for steel structure manufacturing in offshore wind energy to get high quality and productivity. Welding technology in construction of the wind towers is depended on progress productivity. In addition, the life of wind tower structures should be considered by taking account of the natural weathering and the load it endures. The root passes are typically deposited using Gas Tungsten Arc Welding(GTAW) with a specialized backing gas shield. Not only the validation consists of welders experienced in determining the welding productivity of the baseline welding procedure, but also the standard testing required by the ASME section IX and API1104 codes, toughness testing was performed on the completed field welds. This paper presents the welding characteristics of the root-pass welding of high tensile steel in manufacturing of offshore wind tower. Based on the result from welding experiments, optimal welding conditions were selected after analyzing correlation between welding parameters(peak current, background current and wire feed rate) and back-bead geometry such as back-bead width(mm) and back-bead height performing root-pass welding experiment under various conditions. Furthermore, a response surface approach has been applied to provide an algorithm to predict an optimal welding quality.

Power Electronics as an Enabling Technology for Renewable Energy Integration

  • Blaabjerg, F.;Chen, Z.
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.81-89
    • /
    • 2003
  • The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity, to produce, distribute and use the energy as0 efficient as possible and furthermore to set up incentives to save energy at the md-user. Two major technologies will play important roles to fulfill those targets. One is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficiency power electronics in power systems for high efficiency and high performance applications. This paper discusses both areas, in particular the power electronic application in wind power integration.

Analysis of Environmental and Social Problems Caused by Photovoltaic Complex and Wind Farm Construction and Countermeasures to Mitigate the Problems (태양광 및 풍력단지의 개발에 따른 환경적·사회적 문제 분석 및 대응방안)

  • Ahn, Sewoong;Lee, Hi Sun
    • Journal of Environmental Policy
    • /
    • v.10 no.3
    • /
    • pp.3-20
    • /
    • 2011
  • Through case studies of photovoltaic complex and wind farm construction and management, the causes of environmental and social conflicts were analyzed. Policies and measures to minimize conflicts and complement the institution were identified by analyzing successful construction and management case studies from both domestic and abroad. The causes of problems were haphazard damages to the regional environment, direct damages from power production facilities, lack of regional benefits from power production businesses, and loose environmental restrictions and management. The countermeasures to mitigate the problems at hand are to improve and strengthen the guidelines for power production businesses, secure residents' acceptability, strengthen regulations for business explanation, increase stakeholder's participation, find alternative sites, and ensure the speedy implementation of on-shore wind farms. Through these countermeasures, specific goals included in the New Renewable Energy Master Plan, such as target goals for photovoltaic and wind energy, preservation and protection of environment, and improvement of residents' acceptability, can be achieved.

  • PDF

Augmentation of Wind Farms Ride Through by DFIG-based Variable Speed Wind Generators

  • Okedu, K.E.;Muyeen, S.M.;Takahashi, R.;Tamura, J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.104-113
    • /
    • 2012
  • Wind farm grid codes require wind generators to ride through voltage sags, which means that normal power production should be re-initiated once the nominal grid voltage has been recovered. Doubly Fed Induction Generator (DFIG) based wind farm is gaining popularity these days because of its inherent advantages like variable speed operation and independent controllability of active and reactive power over conventional Induction Generator (IG). This paper proposes a new control strategy using DFIGs for stabilizing a wind farm composed of DFIGs and IGs. Simulation analysis by using PSCAD/EMTDC shows that the DFIGs can effectively stabilize the IGs and hence the entire wind farm through the proposed control scheme by providing sufficient reactive power to the system.

Model analysis for production and utilization of hydrogen energy from wind power and solar cell (풍력-태양전지에 의한 수소에너지 생산과 이용 모델 분석)

  • Lee, Kee Mun;Park, Chang Kwon;Jeong, Kwi Seong;Oh, Byeong Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.4
    • /
    • pp.239-246
    • /
    • 2001
  • Fossil fuel such as oil and natural gas has been used and will be no longer supplied enough to demand in the beginning of thisg century. The use of the fuel makes a lot of environmental pollution to threaten human being's health especially in big cities and produces a lot of $CO_{2}$ to make green house effect of the earth. It is the time to use clean fuel such as hydrogen to prevent the expected energy crisis and the pollution. A new engine such as fuel cell can be used instead of the conventional internal combustion engine with 2 to 3 times higher efficiency of the conventional engine. The fuel cell uses hydrogen and oxygen and produces electric energy and pure water, which is a calm engine without air pollution. In big cities the city buses and the taxies powered by hydrogen fuel cells are suggested to be operated for clean environment. The energy and cost analysis performed for hydrogen and electricity production from wind power and solar cell.

  • PDF

Operational Characteristics of High-Performance kW class Alkaline Electrolyzer Stack for Green Hydrogen Production

  • Choi, Baeck B.;Jo, Jae Hyeon;Lee, Taehee;Jeon, Sang-Yun;Kim, Jungsuk;Yoo, Young-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.302-307
    • /
    • 2021
  • Polymer electrolyte membrane (PEM) electrolyzer or alkaline electrolyzer is required to produce green hydrogen using renewable energy such as wind and/or solar power. PEM and alkaline electrolyzer differ in many ways, instantly basic materials, system configuration, and operation characteristics are different. Building an optimal water hydrolysis system by closely grasping the characteristics of each type of electrolyzer is of great help in building a safe hydrogen ecosystem as well as the efficiency of green hydrogen production. In this study, the basic operation characteristics of a kW class alkaline water electrolyzer we developed, and water electrolysis efficiency are described. Finally, a brief overview of the characteristics of PEM and alkaline electrolyzer for large-capacity green hydrogen production system will be outlined.

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

Power performance Testing of Small Wind Turbine Generator System (소형 풍력발전시스템의 출력성능검사)

  • Kim, Hyeon-Ki;Kim, Byeong-Min;Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.123-128
    • /
    • 2011
  • In this study, procedures, a power performance testing system of Wind Turbine System Research Center of Kangwon National University is introduced. Test prodedures and results are presented on a stand-alone vertical-axis 200W wind turbine manufactured by Geum-Poong Energy Inc.. Power performance test is performed according to IEC standard. The test results are compared with the power performance standard. Also, the effects of normalization and disturbed sectors are considered.

  • PDF

An Accuracy Estimation of AEP Based on Geographic Characteristics and Atmospheric Variations in Northern East Region of Jeju Island (제주 북동부 지역의 지형과 대기변수에 따른 AEP계산의 정확성에 대한 연구)

  • Ko, Jung-Woo;Lee, Byung-Gul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2012
  • Clarify wind energy productivity depends on three factors: the wind probability density function(PDF), the turbine's power curve, and the air density. The wind PDF gives the probability that a variable will take on the wind speed value. Wind shear refers to the change in wind speed with height above ground. The wind speed tends to increase with the height above ground. also, Wind PDF refers to the change with height above ground. Wind analysts typically use the Weibull distribution to characterize the breadth of the distribution of wind speeds. The Weibull distribution has the two-parameter: the scale factor c and the shape factor k. We can use a linear least squares algorithm(or Ln-least method) and moment method to fit a Weibull distribution to measured wind speed data which data was located same site and different height. In this study, find that the scale factor is related to the average wind speed than the shape factor. and also different types of terrain are characterized by different the scale factor slop with height above ground. The gross turbine power output (before accounting for losses) was caculated the power curve whose corresponding air density is closest to the air density. and air desity was choose two way. one is the pressure of the International Standard Atmosphere up to an elevation, the other is the measured air pressure and temperature to calculate the air density. and then each power output was compared.

Power Curve Measurements on the 6kW Wind Turbine (6kW 풍력발전기의 출력곡선 측정)

  • Yoo, Neung-Soo;Nam, Yoon-Su;Lee, Jung-Wan;Cho, Joo-Suk
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.149-157
    • /
    • 2005
  • The power performance monitoring system for a small class of wind turbine is established. The wind turbine power performance characteristics are determined by measured power curve and the estimated annual energy production (AEP). The measured power curve is determined by collecting simultaneous measurements of wind speed and power output at the test site under varying wind conditions. In order to determine the power performance characteristics of the wind turbine accurately, the data are of sufficient quantity and quality shall be corrected according to defined criteria. In this study, the 6kW wind turbine made by Germany Inventus GmbH is examined.

  • PDF