• 제목/요약/키워드: Wide-angle

검색결과 1,033건 처리시간 0.037초

KDP결정을 이용한 고강도 Nd 레이저광의 제4 고조파변환 해석 (Analysis of Fourth Harmonic Conversion of High Intensity Nd Laser Beam in KDP Crystal)

  • 장용무;김병태;강형부
    • 대한전기학회논문지
    • /
    • 제41권5호
    • /
    • pp.541-550
    • /
    • 1992
  • The fourth harmonic conversion(FHC) efficiency of high-power Nd laser pulse with wavelength of 1.054x10S0-6Tm using two KDP crystals(doubler adn quadrupler) was simulated numerically. Simulation results show that for the perfect phase-matching condition the FHC efficiency were 60-70% for several hundreds MW/cmS02T class and over 70% for GW/cmS02T class laser pulses. And the overall characteristics of FHC were discussed in terms of effects of input intensity, crystal length, and mismatch angle Δ$\theta$. Optimum method to FHC was type-II doubler & type-I quadrupler KDP crystal because type-II KDP doubler crystal has wide tolerance of acceptance matching-angle.

Implementation of High-Resolution Angle Estimator for an Unmanned Ground Vehicle

  • Cha, SeungHun;Yeom, DongJin;Kim, EunHee
    • Journal of electromagnetic engineering and science
    • /
    • 제15권1호
    • /
    • pp.37-43
    • /
    • 2015
  • We implemented a real-time radar system for an unmanned ground vehicle designed to run on unpaved or bumpy roads. The system must be able to detect slow targets in a cluttered environment and cover wide angular sections with high resolution at the same time. The system consists of array antennas, preprocessors for digital beam forming, and digital signal processors for the detection process which uses sawtooth waveforms and high-resolution estimation, and is called forward/backward spatial smoothing beamspace multiple signal classification (FBSS BS-MUSIC). We show that the sawtooth waveforms enhance the angular estimation capability of FBSS BS-MUSIC in addition to their well-known advantages of removing the ambiguity of targets and detecting slow targets with improved velocity resolution.

Injection-Locking Coupled Oscillators를 이용한 빔 주사 용 능동 위상배열안테나의 설계 및 제작 (A design and fabrication of active phased array antenna for beam scanning using injection-locking coupled oscillators)

  • 이두한;김교헌;홍의석
    • 한국통신학회논문지
    • /
    • 제22권8호
    • /
    • pp.1622-1631
    • /
    • 1997
  • A 3-stages Active Microstrip Phased Array Antenn(AMPAA) is implemented using Injection-Locking Coupled Oscillators(ILCO). The AMPAA is a beam scanning active antenna with capability of electrical scanning by frequency varation of ILCO. The synchronization of resonance frequencies in array elements is occured by ILCO, and the ILCO amplifies the injection signal and functions as a phase shifter. The microstrip ptch is operated as a radiation element. The unilateral amplifier is a mutual coupling element of AMPAA, eliminates the reverse locking signal and controls the locking bandwidth of ILCO. The possibility of Monolithic Microwave Integrated Circuits(MMIC) of T/R module is proposed by simplified and integrated fabrication process of AMPAA. The 0.75.$lambda_{0}$ is fixed for a mutual coupling space to wide the scanning angle and minimize the multi-mode. The AMPAA has beam scanning angle of 31.4.deg., HPBW(Half Power Beam Widths) of 26.deg., directive gain of 13.64dB and side lobe of -16.5dB were measured, respectively.

  • PDF

동기 리럭턴스 전동기의 에너지 절감을 위한 효율 최적화 제어 (Efficiency Optimization Control for Energy Saving of Synchronous Reluctance Motor)

  • 이정철;이흥균;정동화
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.159-162
    • /
    • 2001
  • This paper is proposed an efficiency optimization operation algorithm for synchronous reluctance motor (SynRM) using current phase angle control technique. The SynRM has to controlled with the optimal current phase angles with load and operation speed variation, to obtain high efficiency over the wide speed ranges. An efficiency optimization condition in SynRM which minimizes the copper and iron losses is derived based on the equivalent circuit model of the machine. The objective of the efficiency optimization control algorithm compensating the optimum current angle, is to seek a combination of d and q-axis current components which provides minimum losses at a certain operating point in steady state. The usefulness of the proposed efficiency optimization control is verified through vector-controlled inverter system with the SynRM.

  • PDF

Wind Turbine Simulators for Control Performance Test of DFIG

  • Abo-Khalil, Ahmed;Lee, Dong-Choon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.192-194
    • /
    • 2007
  • This paper proposes a new wind turbine simulator using a squirrel cage induction for control performance test of DFIG (doubly-fed induction generator). The turbine static characteristics are modeled using the relation between the turbine torque versus the wind speed and the blade pitch angle. The turbine performance is subjected to a real wind speed pattern by modeling the wind speed as a sum of harmonics with a wide range of frequency. The turbine model includes the effect of the tower shadow and wind shear. A pitch angle controller is designed and used to protect the coupled generator by limiting the turbine speed to the maximum value. Experimental results are provided for a 3[kW] wind turbine simulator at laboratory.

  • PDF

LCD의 광시야각 기술개발 및 최신동향 (Recent trend of wide viewing angle technology on liquid crystal display)

  • 서대식
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권7호
    • /
    • pp.733-744
    • /
    • 1996
  • 본 논문에서는 최근 LCD소자에 있어서 큰 이슈로 등장한 표면 액정배향기술 및 광시야각 기술에 관하여 설명하였다. 표면 액정배향기술에 있어서는 종래의 러빙법에 대신하여 편광된 자외선을 조사하여 액정분자를 배열시키는 광배향제어법이 큰 기대를 모으고 있으며, 이 기술은 프리틸트 각 발생제어기술과 신뢰성이 과제로 남아있다. 광시야각 기술에 있어서는 최근까지 여러 방식이 제안되어왔으며 그 중에서도 현재로는 광학보상법, IPS방식 등이 실용화가 진행되고 있다. 그러나 향후 다른 방식의 기술발전 여부에 따라 상황이 변화될 것으로 예상된다. 각각의 방식에 따라 서로 장단점을 지니고 있어 향후 이용분야에 따라 용도를 나누어서 응용될 것으로 기대되어진다. LCD소자는 이러한 기술개발의 결과로 평판디스플레이 소자 중에서 더욱 확고한 위치를 확보할 것이며 더 많은 시장성을 점유할 것으로 전망된다. 이상으로 본 논문에서는 LCD소자의 표면액정 배향기술 및 광시야각 기술에 관하여 해설하였으며 표면액정 배향기술에 관하여는 간단히 소개하였으나 이 내용에 관하여는 다음 기회에 상세히 소개하기로 한다.

  • PDF

Initial Growth and Surface Stability of 1,4,5,8,9,11-Hexaazatriphenylene-exanitrile (HATCN) Thin Film on an Organic Layer

  • Kim, Hyo Jung;Lee, Jeong-Hwan;Kim, Jang-Joo;Lee, Hyun Hwi
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.192.2-192.2
    • /
    • 2013
  • Crystalline order and surface stability of 1,4,5,8,9,11-hexaazatriphenylene-hexanitrile (HATCN) thin films on organic surface were investigated using grazing incidence wide angle x-ray scattering and x-ray reflectivity measurements. In the initial growth regime (less than 20 nm), HATCN molecules were stacked to low crystalline order with substantial amorphous phase. Meanwhile, a thicker film with 50 nm thickness showed high crystalline order of hexagonal phase with three different orientational domains. The domain distribution was quantitatively obtained as a function of tilted angle. By an organic-inorganic interface formation of IZO/HATCN thin film from an indium zinc oxide (IZO) electrode deposition, the surface stability of HATCN film was investigated and the sharp interface was confirmed by the x-ray reflectivity measurement.

  • PDF

디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대 (Display Technologies for Immersive Devices and Electronic Skin)

  • 박영준
    • 전자통신동향분석
    • /
    • 제34권2호
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.

Vehicle Orientation Detection Using CNN

  • Nguyen, Huu Thang;Kim, Jaemin
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.619-624
    • /
    • 2021
  • Vehicle orientation detection is a challenging task because the orientations of vehicles can vary in a wide range in captured images. The existing methods for oriented vehicle detection require too much computation time to be applied to a real-time system. We propose Rotate YOLO, which has a set of anchor boxes with multiple scales, ratios, and angles to predict bounding boxes. For estimating the orientation angle, we applied angle-related IoU with CIoU loss to solve the underivable problem from the calculation of SkewIoU. Evaluation results on three public datasets DLR Munich, VEDAI and UCAS-AOD demonstrate the efficiency of our approach.

Compact near-eye display for firefighter's self-contained breathing apparatus

  • Ungyeon Yang
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.1046-1055
    • /
    • 2023
  • We introduce a display for virtual-reality (VR) fire training. Firefighters prefer to wear and operate a real breathing apparatus while experiencing full visual immersion in a VR fire space. Thus, we used a thin head-mounted display (HMD) with a light field and folded optical system, aiming to both minimize the volume for integration in front of the face into a breathing apparatus and maintain adequate visibility, including a wide viewing angle and resolution similar to that of commercial displays. We developed the optical system testing modules and prototypes of the integrated breathing apparatus. Through iterative testing, the thickness of the output optical module in front of the eyes was reduced from 50 mm to 60 mm to less than 20 mm while maintaining a viewing angle of 103°. In addition, the resolution and image quality degradation of the light field in the display was mitigated. Hence, we obtained a display with a structure consistent with the needs of firefighters in the field. In future work, we will conduct user evaluation regarding fire scene reproducibility by combining immersive VR fire training and real firefighting equipment.