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Abstract

Vehicle orientation detection is a challenging task because the orientations of vehicles can vary in a wide range 

in captured images. The existing methods for oriented vehicle detection require too much computation time to be 

applied to a real-time system. We propose Rotate YOLO, which has a set of anchor boxes with multiple scales, 

ratios, and angles to predict bounding boxes. For estimating the orientation angle, we applied angle-related IoU 

with CIoU loss to solve the underivable problem from the calculation of SkewIoU. Evaluation results on three 

public datasets DLR Munich, VEDAI and UCAS-AOD demonstrate the efficiency of our approach.
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Ⅰ. Introduction

Vehicle detection is one of the key parts of an

intelligent traffic management system. Within a

dense traffic scene, both location and orientation

of vehicles contribute significantly to maintaining

the accuracy of the tracking system. Vehicle

orientation detection with rotate bounding boxes

can reduce the influence of the background

image and provide the angle attribute to further

processing such as tracking.

1. Object Detection Methods

The current object detecting methods can be

divided into two categories: two-stage object

detectors (fast R-CNN [1], faster R-CNN [2]),

and single-stage object detectors single-shot

mulch-box detector (SSD [3]), You Only Look

Once (YOLO [4])). With a simple pipeline, the

single-stage networks object detectors are very

fast, while the two-stage networks are slow but

have better accuracy.

Since Redmon et al. [5] introduced the first

version of YOLO, it attracted lots of attention

because of its feasibility to apply object detection

in real-time. From the third version, the most

notable feature of YOLO is that it makes

detections at three different scales. Bochkovskiy

et al. [6] performed a series of experiments with

many of the most advanced innovation ideas of

computer vision for each part of YOLOv3 the

architecture to create YOLOv4. By applying the

most advanced optimization methods (Mosaic

augmentation, CIoU loss, Cross-stage partial

connections (CSP), Mish activation, etc.), YOLOv4

is proved to be incredibly fast and still has high

accuracy as shown in Fig. 1.
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Fig. 1. Comparison of the Scaled YOLOv4 and other 

state-of-the-art object detectors [6].

Even though these methods achieved impressive

results on different benchmarks their predicted

bounding box output mostly aligned with the

horizontal axis and ignored the orientation of

objects. A horizontally aligned bounding box can

cover not only object areas but also the

background. Therefore it can confuse the network

in complicated circumstances. Moreover, it is a

difficult task to separate the objects with a

horizontal bounding box when objects are closely

attached in the 45-degree direction.

2. Object Orientation Detection

Yang et al. [7] employed a refinement stage to

the RetinaNet to refine the bounding box and

added a feature refinement module (FRM) to

reconstruct the feature map. The FRM module

uses the feature interpolation to reconstruct the

feature map pixel-wise and achieve feature

alignment. But their approximate SkewIoU loss

calculation can be indifferentiable because objects

can have various orientations appearance in

images. Furong Shi et al. [8] proposed vehicle,

center, scale, and orientation prediction-based

detector (VCSOP) including four modules for

multitask learning. By dividing the ResNet-50

into 5 stages, the localization information from

the lower layer and the global semantic information

in higher layer features would be fused for

further use of vehicle feature prediction. This

strategy can significantly improve the performance

of object detection but consume lots of time for

post-processing. Furthermore, their range of

angle from 0-90 degrees does not reflect the

diversity of the vehicle orientations in images.

Fig. 2. Scaled YOLOv4 architecture.

3. The Proposed Method

The contributions of our approach are summarized

as follows:

1. A real-time vehicle orientation detection is

proposed, which can predict both location and

orientation of vehicles in images.

2. Angle parameter is added to the traditional

anchor boxes of Scaled YOLOv4 to make rotated

anchors. These rotated anchors will assist the

network to learn all the arbitrarily orientation.

3. For rotated objects detection, we applied

angle-related IoU (ArIoU) [9] to solve the

underivable problem from the calculation of

SkewIoU [7].

Ⅱ. The Proposed Method 

1. Rotate YOLOv4

The proposed vehicle orientation detector is

based on Scaled YOLOv4 [4], denoted as Rotate

YOLOv4. Fig. 2 illustrates the network structure

of our method. YOLO splits the input image into

S x S (7 x 7 by default) grid cell. These cells

predict parameters of bounding boxes and

probabilities of classes. Finally, YOLO applies

(620)



38 j.inst.Korean.electr.electron.eng.Vol.25,No.4,619～624,December 2021

Non-Maximum Suppression (NMS) to remove

the overlap bounding boxes.

For YOLOv4-based rotation detection, the

vehicle orientation is represented by a rotated

bounding box with five parameters ().

If the cell is offset from the top left corner of the

image by () and the bounding box prior has

width, height, and angle, then the predictions

correspond to:

   

   

  


  


   

(1)

The width is set to the long side of the

bounding box, and the height is set to the short

side.  is the acute angle between the horizontal

axis and the long side, ranging from ( 





).

2. Rotated Anchor

The horizontally aligned anchors used in YOLOv4

[6] are not suitable for vehicle orientation detection.

Therefore, we extend the existing anchor. First,

we add an angle parameter to control the

orientation. We use six different directions to

cover the vehicle orientation. We keep the ratios

(1:2, 1:5, 1:8) and scales of 8, 16, and 32 as

YOLOv4 for the anchor box. The anchor box

strategy is described in Fig. 3.

Fig. 3. Anchor strategy used in our approach.

3. Loss function

Inspired by the work of R3Det [7], we want to

apply their loss function into our architecture.

However, in their work, Yang et al. [7] explained

that the smooth L1 loss function is not suitable

for rotation detection, while SkewIoU is too

sensitive for objects with large aspect ratios.

Therefore, we cannot use the SkewIoU directly

as the regression loss function. To solve that

problem, we applied the angle-related IoU (ArIoU)

proposed by Lei Liu et al [9] in our loss function

because it is simpler and faster. We also adapted

the CIoU, which is applied in YOLOv4 to have

an effective regression loss function. The final

loss function is described as below:

 

 
  



′

′


′   ′ ′
(2)

where  indicates the number of anchors,  is

a binary value (=1 for the foreground and

=0 for the background), ′ represents the

predicted offset vectors,  denotes the targets

vector of the ground-truth.  denotes the

overlap of the prediction box and ground-truth.

The hyper-parameter  controls the trade-off

and is set to 1 by default. Compared to the

traditional regression loss, the new regression

loss can be divided into two parts, ′

′

determines the direction of gradient propagation

(a unit vector), which is an important part to

ensure that the loss function is derivable.

 is responsible for adjusting the loss

value (magnitude of gradient), so it can enforce

the detector to learn the right angle. Through

such combination, the loss function is derivable,

while its size is highly consistent.

Ⅲ. Experiments

1. Datasets

We evaluate our vehicle orientation detection

framework on three public datasets: DLR Munich

Vehicle dataset [10], Vehicle Detection in Aerial

(621)



Vehicle Orientation Detection Using CNN 39

Imagery (VEDAI) dataset [11], and UCAS-AOD

dataset [12].

VEDAI dataset is acquired over Utah, U.S., and

contains various backgrounds such as agrarian,

rural, and urban areas. Moreover, the VEDAI

dataset has two different resolutions and is divided

into two parts: VEDAI512 and VEDAI1024. VEDAI512

comprises the downscaled images of VEDAI1024.

The images are divided into ten folds for cross-

validation. Each fold contains approximately the

same number of vehicles. In our experiments,

only VEDAI512 (512x512) was used.

DLR Munich vehicle dataset contains 20 aerial

images sized 5616 x 3744 pixels. In the experiments,

we only used the first 10 images for training and

comparing methods.

UCAS-AOD has 1510 images of resolution 1280

x 659, with two categories. This dataset can be

challenging due to the large aspect ratio with

arbitrary orientation. In our experiment, we randomly

chose 960 images for training, and 83 images for

testing.

When comparing the performance of the proposed

method with the existing methods, the performance

values of the other methods are those published

in previous papers. The experimental conditions

of the proposed method were set to be as similar

as possible to the experimental conditions used

in the previous papers.

The goal of our method concentrates on detecting

vehicles in images, so we reduced the classes in

the two datasets VEDAI and DLR Munich by

putting other object categories into class “Others”,

and only keep the vehicles classes (i.e., car,

truck, bus…)

2. Evaluation

To evaluate the performance of our approach,

the popular evaluation criteria are applied, namely,

precision, recall, F1 score, and average precision

(AP). The precision and recall metrics measure

the ratio of correctly identified vehicles to totally

detected vehicles and to actual vehicles, respectively.

The comprehensive performance of precision and

recall is evaluated using the F1 score. The AP

metric is measured by the area under the precision-

recall curve. The higher the F1 score and AP,

the better the performance.

Table 1. Performance comparison between different 

methods on DLR Vehicle Aerial dataset.

Methods Recall Precision F1 score
Time Per 
image

ACF[13] 69.30% 86.80% 0.77 4.40s

Faster 
R-CNN[2]

68.74% 88.95% 0.78 3.84s

Oriented 
SSD[14]

78.84% 89.20% 0.82 5.17s

RRPN[15] 82.58% 85.88% 0.84 4.11s

VCSOP[8] 86.52% 94.62% 0.90 2.82s

Rotate YOLOv4 84.52% 91.34% 0.93 1.41s

The experiments in this paper are developed

with Pytorch. We train 1000 epochs for each

dataset on a single NVIDIA GTX 1080i GPU.

The initial learning rate is 1×10^(-4). We employ

Adam as the optimizer for the network.

Table 1. shows the performance of the proposed

Rotate YOLOv4 and five other methods. Rotate

YOLOv4 does not achieve the best performance

in terms of recall and precision, but the best

performance in terms of F1 score. Above all, the

time per image of our method is significantly

smaller than other methods.

Table 2. Results of different methods on the VEDAI512 

dataset. The best mean average precision 

(mAP) is highlighted in bold.

Methods
SVM+LBP 

[16]

SVM+HO
G31+LBP 

[16]

RRPN
[15]

VCSOP
[12]

Rotate
YOLOv4

mAP 64.3 75.0 81.2 88.5 92.5

The images in the VEDAI dataset do not have

dense traffic as in the DLR Munich vehicle. But

it is more challenging due to the various clutter
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backgrounds and many disturbance factors. The

proposed Rotate YOLOv4 achieves the best mean

AP (mAP). By using YOLOv4 backbone, our

detector is also much faster with 0.03s processing

time for 512x512 images.

Table 3. Results of different methods on the UCAS-AOD 

dataset.

Method mAP Plane Car

YOLOv2[5] 87.90 96.60 79.20

YOLOv4[6] 92.30 97.60 90.70

R3Det 96.17 98.20 94.14

Rotate YOLOv4 97.21 98.75 97.12

Table 3 shows the comparison of published

methods on UCAS-ADO dataset, our results are

better than R3Det [7].

With better accuracy and fast speed in this

dataset, our Rotate YOLOv4 proved to be an

efficient method for detecting vehicle orientation

in real-time.

Ⅳ. Conclusion

We have presented a real-time vehicle orientation

detector based on YOLOv4, namely Rotate YOLOv4

for rotating objects in dense distribution and

clutter backgrounds. The detection results of our

network are arbitrarily oriented rectangles, which

can describe the vehicles in the traffic more

precisely. For more accurate rotation estimation,

we applied angle-related IoU (ArIoU) to help the

network learn the right angle. Both the qualitative

and quantitative results of the experiments proved

that our approach can be reliable in various

backgrounds. More importantly, our method can

be applied in a real-time system.
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