• Title/Summary/Keyword: Wide band isolation

Search Result 45, Processing Time 0.026 seconds

A Study on Dynamic Modeling of the Vibration Isolation System for the Ultra Precision Measurement (초정밀작업을 위한 제진시스템의 동역학 모델링 연구)

  • Son, Sung-Wan;Jang, Sung-Ho;Baek, Jae-Ho;Chun, Chong-Keun;Kwon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • The anti-vibration tables that use air suspensions as dampers have been widely used due to their high anti-vibration performance in wide frequency band. However, they face a problem of easily accelerating the vibration when triggered by external force because their air suspensions have low rigidity and dampness. In response, there has been a study on active/semi-active dampers that use only the passive components like air suspensions to complement the passive-control format. Thus, we have dynamically analyzed the active/semi-active control of such passive anti-vibration tables. To demonstrate the anti-vibration table's control system, we have also constructed a kinetic model based on the physical characteristics of an anti-vibration table with 6 degrees of freedom and verified its applicability through analysis and experiments.

Design of Transmitter for UWB Chaotic-OOK Communications (UWB Chaotic-OOK 통신을 위한 송신기 설계)

  • Jeong, Moo-Il;Kong, Hyo-Jin;Lee, Chang-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.384-390
    • /
    • 2008
  • Chaotic OOK modulation method can be used in LDR(Low Data Rate) UWB systems. In this paper, UWB chaotic-OOK transmitter system is designed and verified using TSMC 0.18 um CMOS process. A transmitter system is composed of Quasi-chaotic signal generator, OOK Modulator, and driving amplifier. The traditional chaotic signal generators using analog feedback method is weak to process variation. In order to solve this problem, a quasi-chaotic signal generator using digital feedback technique is get wide band signal and OOK Modulator using T-type switching structure is used to enhance the isolation characteristic. A driving amplifier has differential to single structure to avoid an external balun for low cost communication. The measured output power spectrum of the transmitter meet the FCC regulation and the result of the modulation test at data rate of 20 Kbps, 200 Kbps, 2 Mbps, and 10 Mbps is conformed to LDR UWB system. It is shown that the transmitter in this paper can be used for the UWB chaotic-OOK system.

Analytical Modeling of Conventional and Miniaturization Three-Section Branch-Line Couplers

  • You, Kok Yeow;AL-AREQI, Nadera;Chong, Jaw Chung;Lee, Kim Yee;Cheng, Ee Meng;Lee, Yeng Seng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.858-867
    • /
    • 2018
  • Analytical modeling equations are proposed for the conventional and modified three-section branch-line couplers. The analytical equations are explicit and capable of determining the characteristic impedance of each branch line for the coupler at desired coupling level as well as the suitability of broadband S-parameters analysis. In addition, a bandwidth extension and miniaturization of three-section branch-line coupler using slow-wave and meandering line structures were designed. The modified coupler, which is able to operate within frequencies from 1.5 to 3.32 GHz has been fabricated, tested and compared. A bandwidth extension of 600 MHz and 53% reduced size of the modified coupler have been achieved compared to a conventional coupler. The modified coupler has roughly insertion loss and coupling of -4 dB and -3.2 dB, while the isolation and return loss, respectively less than -14 dB with fractional bandwidth of 77 %, as well as phase imbalances less than $2^{\circ}$ over the operating bandwidth. Overall, the derived analytical model, simulation and measurement results demonstrated a good agreement.

The Design of a Wideband 3 dB Quadrature Coupler using N-Section Parallel-Coupled Lines (N단 평행 결합 선로를 이용한 90° 광대역 3 dB 결합기 설계)

  • 조정훈;윤상원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.94-100
    • /
    • 2002
  • In this paper, we proposed a 3 dB coupler using N-section parallel-coupled lines and designed a very compact one based on the analysis results. The coupled line has been analyzed by spectral domain method. After we obtain the s-parameters of N-section parallel-coupled lines by using port reduction method 4-port s-parameters are derived. The 3 dB couplers, which were fabricated, are not necessary to implement high impedance lines and tight coupling gaps as Lange Couplers because loose coupling is used. To realize a minimum section, we used the PCB that has high a dielectric constant and a thickness. The experimental results show that it has wide bandwidth of about 42 %(0.5 dB unbalance) from 3.6 GHz to 5.5 GHz and phase difference within 1 degree. Also, The isolation characteristics about 15 dB at its pass-band are obtained.

Design of A Microwave Planar Broadband Power Divider (마이크로파대 평면형 광대역 전력 분배기 설계)

  • Park, Jun-Seok;Kim, hyeong-Seok;Ahn, Dal;Kang, Kwang-yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.651-658
    • /
    • 2001
  • A novel multi-section power divider configuration is proposed to obtain wide-band frequency performance up to microwave frequency region. Design procedures for the proposed microwave broadband power divider are composed of a planar multi-section three-ports hybrid and a waveguide transformer design procedures. The multi-section power divider is based on design theory of the optimum quarter-wave transformer. Furthermore, in order to obtain the broadband isolation performance between the two adjacent output ports, the odd mode equivalent circuit should be matched by using the lossy element such as resistor. The derived design formula for calculating these odd mode matching elements is based on the singly terminated filter design theory. The waveguide transformer section is designed to suppress the propagation of the higher order modes such as waveguide modes due to employing the metallic electric wall. Thus, each section of the designed waveguide transformer should be operated with evanescent mode over the whole design frequency band of the proposed microwave broadband power divider. This paper presents several simulations and experimental results of multi-section power divider to show validity of the proposed microwave broadband power divider configuration. Simulation and experiment show excellent performance of multi section power divider.

  • PDF