• Title/Summary/Keyword: WiFi(Wireless)

Search Result 361, Processing Time 0.031 seconds

Study on D2D Relay based Interconnection Network of HAM Radio and Wi-Fi for Securing Communication Performance in Satellite Wireless Package Systems (이동단말용 위성 통신 무선 패키지 시스템을 위한 D2D Relay 기반 HAM Radio와 Wi-Fi Network 결합망의 통신 성능 확보 연구)

  • Hwang, Yu Min;Cha, Jae Sang;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.12-16
    • /
    • 2015
  • In this paper, we introduce a wireless package system based on the amateur radio HR(HAM Radio) and satellite communication as a novel wireless disaster communication system and have configured a interference scenario receiving interference from adjacent base stations and D2D groups in the disaster network. In such interference scenarios, we propose a frequency re-allocation method to avoid interference and communicate with disaster networks by securing the channel capacity required between D2D terminals. As a result of computer simulation, we can find the proposed method has improved BED performance of a gain of 1.5dB and overall system throughput than conventional methods.

WiFi(RLAN) and a C-Band Weather Radar Interference

  • Moon, Jongbin;Ryu, Chansu
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.216-224
    • /
    • 2017
  • In the terrain of the Korean peninsula, mountainous and flat lands are complexly distributed in small areas. Therefore, local severe weather develops and disappears in a short time due to the influence of the terrain. Particularly in the case of local severe weather with heavy wind that has the greatest influence on aviation meteorology, the scale is very small, and it occurs and disappears in a short time, so it is impossible to predict with fragmentary data alone. So, we use weather radar to detect and predict local severe weather. However, due to the development of wireless communication services and the rapid increase of wireless devices, radio wave jamming and interference problems occur. In this research, we confirmed through the cases that when the radio interference echo which is one of the non-precipitation echoes that occur during the operation of the weather radar is displayed in the image, its form and shape are shown in a long bar shape, and have a strong dBZ. We also found the cause of the interference through the radio tracking process, and solved through the frequency channel negotiation and AP output minimizing. The more wireless devices increase as information communication technology develops in the future, the more emphasized the problem of radio wave interference will be, and we must make the radio interference eliminated through the development of the radio interference cancellation algorithm.

IoT network configuration utilizing Xbee (Xbee를 활용한 IoT 활용 방법)

  • Kim, Min-kyu;Kim, Ki-Hwan;Lee, Hoonjae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.546-548
    • /
    • 2016
  • Recently, everyone enjoys the convenience of the rapid development of wireless network technology. There is the IoT (Internet of Things) with the technology come into the spotlight in the network technology. The IoT technology it is possible to view or manipulate the state of the object at a distance to connect to the Internet, all of the individual objects. The IoT existing technology was connected through the wireless technology used the wired network or Wi-Fi. In this paper, change the wireless network connection Xbee saw a brief to study the IoT network.

  • PDF

Efficient Drone Detection method using a Radio-Frequency (RF를 이용한 효과적인 드론 탐지 기법)

  • Choi, Hong-Rak;Jeong, Won-Ho;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.26-33
    • /
    • 2017
  • A drone performs a mission through remote control or automatic control, which uses wireless communications technology. Recently the increasing use of drones, the drone signal RF detection is necessary. In this paper, we propose an efficient dron RF detection method through simulations considering Wi-Fi, Bluetooth and dedicated protocol dron communication method in ISM(Industry Science Medical) band.. After configuring an environment where a common terminal and a drone signal are mixed, a general terminal and a drone signal are distinguished from each other by using a RF characteristic according to a dron movement. The proposed drone RF detection method is the WRMD(Windowed RSSI Moving Detection) operation and the Doppler frequency identification method. The simulation environments consist to mixed for two signals and four signals. We analysis the performance to proposed drone RF detection technique thorough detection rate.

Raptor Codes-based Screen Mirroring for Energy Efficiency (에너지 효율성을 고려한 랩터 코드 기반의 스크린 미러링)

  • Go, Yunmin;Song, Hwangjun
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.134-139
    • /
    • 2017
  • The existing screen mirroring systems are vulnerable to packet loss and inefficient for mobile devices with limited energy capacity. To overcome these problems, we propose a packet loss robust and energy efficient screen mirroring system for mobile device. The proposed system employs systematic Raptor codes for a forward error correction method to mitigate the video quality degradation that is caused by packet loss over wireless networks. For the mobile device energy saving, the proposed system shapes the screen mirroring traffic and adjusts the Raptor encoding parameters. In this paper, the proposed system is fully implemented on single board computers and is examined in a real Wi-Fi Direct network.

Location Estimation Algorithm based on AOA in Indoor Environment (실내 환경에서의 AOA 기반 위치 추정 알고리즘)

  • Jung, Yong-jin;Jeon, Min-ho;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.863-865
    • /
    • 2015
  • A method for estimating position is AOA, TOA, TDOA, Wi-Fi, Beacon etc. A method for estimating the location in indoor environment is used mainly Wi-Fi, Beacon. The reason is that AOA, TOA and TDOA are unfit to estimate position in indoor environment. To address this problem, this paper presents a AOA algorithm based on AP having a four directional antenna. The algorithm uses only the angle received from the four antennas. This can draw linear equations for signal. And calculate the intersections of the lines. Intersections means the position of user.

  • PDF

A Game System Design for Local Wireless Network using Zigbee Technology (지그비 기술을 이용한 근거리 무선 네트워크 게임 시스템 설계)

  • Kang, Sung-Kwan;Kim, Kwan-Woong;Kim, Hong-Ki;Ahn, Tae-Hong
    • Journal of Korea Game Society
    • /
    • v.11 no.6
    • /
    • pp.95-102
    • /
    • 2011
  • At present, with the rise of smart-phone market supported the Wi-Fi, smart-phone based network content has propagated rapidly. But, network content service is difficult in feature phone and multimedia device not supporting the Wi-Fi or supporting only the bluetooth. This paper was used the zigbee technology supporting low power, low cost, availability, multi channel, broadcasting compared to the bluetooth or Wi-Fi. It will provide a variable network game development by utilizing the zigbee technology. Also, it is provide the development of variable mobile network contents using the zigbee.

A Study on Multi-Dimensional learning data composition based on Wi-Fi radio fingerprint (Wi-Fi 전파 지문 기반 다차원 학습 데이터 구성에 관한 연구)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.639-640
    • /
    • 2018
  • Currently, the technique of identifying location using radio wave fingerprint is widely used in indoor positioning field. At this time, in order to confirm a successful position, it is necessary to construct the data necessary for learning and testing and to construct the multidimensional data. That is, location data collection and data management technology capable of responding to environmental changes that may occur due to various changes in peripheral radio wave fingerprint such as wireless AP, BLE iBeacon, and mobile terminal are required. Therefore, this paper proposes a technique to construct and manage multidimensional data which is less sensitive to environmental changes of radio wave fingerprinting required for positioning.

  • PDF

A Study on Notched Wi-Fi Bandwidth of Planar Monopole Antenna with Edge (에지를 가진 평면 모노폴 안테나의 무선랜 대역 저지에 관한 연구)

  • Lee, Yun Min;Lee, Jae Choon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.43-49
    • /
    • 2013
  • In this paper, it is designed inverted triangle structural planar monopole antenna with edge and rectangle slot for UWB(Ultra Wide Band) communication (3.1~10.6 GHz) and researched in about 5.8 GHz notch structure to prevent interference between UWB systems and existing wireless systems for using Wi-Fi service. The antenna have broadband property structurally through inverted triangle structural planar monopole which have edge. and rectangle form addition planned notch slot of 1 mm and height 0.1 mm. Monopole and ground of proposed antenna exist on coplanar plane, and excite as CPW. It used FR4 epoxy dielectric substrate of ${\varepsilon}r$=4.4, and the size is $20{\times}20{\times}1.6$ mm dimension. The measured results that are obtained return loss under -10 dB through 3.1~10.6 GHz(7.5 GHz) without Wi-Fi bandwidth and maximum gain of 8.44 dBi at E-plane. Radiation pattern is about the same that of dipole antenna at all frequency. And using notch slot and it will be able to confirm the quality which becomes notch from 5.8 GHz which are a radio LAN frequency range.

Improved wearable, breathable, triple-band electromagnetic bandgap-loaded fractal antenna for wireless body area network applications

  • Mallavarapu Sandhya;Lokam Anjaneyulu
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.571-580
    • /
    • 2024
  • A compact triple-band porous electromagnetic bandgap structure-loaded coplanar-waveguide-fed wearable antenna is introduced for applications of wireless body area networks. The porous structure is aimed to create a stopband or bandgap in the electromagnetic spectrum and increase breathability. The holes in the bottom electromagnetic bandgap surface increase the inductance, which in turn increases the bandwidth. The final design resonates at three bands with impedance bandwidths of 264 MHz, 100 MHz, and 153 MHz and maximum gains of 2.18 dBi, 6.75 dBi, and 9.50 dBi at 2.45 GHz, 3.5 GHz, and 5.5 GHz, respectively. In addition, measurements indicate that the proposed design can be deformed up to certain curvature and withstand human tissue loading. Moreover, the specific absorption rate remains within safe levels for humans. Therefore, the proposed antenna can suitably operate in the industrial, scientific, and medical, Bluetooth, Wi-Fi, and WiMAX bands for potential application to wireless body area networks.