• Title/Summary/Keyword: Whole-Field Measurement

Search Result 160, Processing Time 0.032 seconds

The Study on the Analysis of Factors Decreasing Construction Labor-Productivity Using AHP Method (AHP기법을 이용한 건설노동생산성 저하요인 분석에 관한 연구)

  • Pyo Young-Min;Bae Soo-Yong;Ryu Hyoung-Han;Lee Sang-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.141-147
    • /
    • 2005
  • Usually, processing whole project or a part of frame work delays due to acceleration, changing orders, management, characters of project. overtime, worker crowding, early occupation in the field of construction. Through a whole project, these factors cause decreasing construction labor-productivity which is the most dependent in business of construction. These kind of decreasing of construction labor-productivity cause many negative effects, just as extension of time, increasing cost in project of construction. Regardless of characters of construction or decreasing labor-productivity, extension of time is a incident which needs acceleration, also it cause a high possibility of claim and dispute. The productivity has just a broad meaning in business of construction. That's why it's difficult to apply in the field of construction. Especially, factors increasing or decreasing labor-productivity is defined by analysis of working as qualitative and outlined evaluation. However, study of the each factor decreasing construction labor-productivity analysis has not researched, because of difficulty of systematic measurement and management. The existed studies about management of productivity are just focused on estimation of productivity, not on evaluation of productivity. It was true that I couldn't examine clearly about the analysis of how much important per each the factor which have influence on labor-productivity because of the characteristic as qualitative that the labor productivity have On this study, i tried to get the factors decreasing of labor- productivity with gathering opinions of panels of expert's studies about the factors decreasing of labor-productivity on project of construction through Delphi method and i evaluated the result factors as quantitatively and subjectively about importance of factors decreasing construction labor-productivity Analysis, using AHP Method by Saaty. Also, using Delphi and AHP method, 1 suggest substantiated method qualitative factors are measured by quantitative criteria.

  • PDF

Heat Transfer Measurement Using a Transient Liquid Crystal Technique and Numerical Anlysis (과도액정기법을 이용한 열전달 측정 및 수치해석)

  • Hong Cheol-Hyun;Lee Ki-Baik;Yang Jang-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.68-77
    • /
    • 2005
  • A transient liquid crystal technique has become one of the most effective ways in measuring the local heat transfer coefficients on the entire surface. The key Point of this technique is to convert the inlet flow temperature into an exponential temperature profile using a mesh heater. In order to verify the validity of this technique. the heat transfer characteristics on the wall surface by a pair of longitudinal vortices is investigated experimently and numerically. A standard ${\kappa}-{\varepsilon}$ is used for the numerical analysis of turbulent flow field. It is found from experiment and numerical analysis that two peak values exist over the whole domain. as the longitudinal vortices move to the farther downstream. these peak values decrease and the dimensionless averaged Nusselt number with the lapse of time is maintained nearly at constant values. The experiment results obtained from the present experiment in terms of the transient liquid crystal technique are in good agreement with the numerical results. Therefore, the transient liquid crystal technique developed for the measurement of heat transfer coefficient is proved to be a valid method.

IONOSPHERIC OBSERVATION USING KOREAN SATELLITES

  • MIN KYOUNG W.;LEE JAEJIN;PARK JAEHEUNG;KIM HEEJUN;LEE ENSANG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.109-115
    • /
    • 2003
  • We report the results of the ionospheric measurement obtained from the instruments on board the Korea Multi-Purpose Satellite - 1 (KOMPSAT-l). We observed a deep electron density trough in the nighttime equatorial ionosphere during the great magnetic storm on 15 July 2000. We attribute the phenomena to the up-lifted F-layer caused by the enhanced eastward electric field, while the spacecraft passed underneath the layer. We also present the results of our statistical study on the equatorial plasma bubble formation. We confirm the previous results regarding its seasonal and longitudinal dependence. In addition, we obtain new statistical results of the bubble temperature variations. The whole data set of measurement for more than a year is compared with the International Reference Ionosphere (IRI). It is seen that the features of the electron density and temperature along the magnetic equator are more prominent in the KOMPSAT-l observations than in the IRI model.

Evaluation of Young's Modulus of a Cantilever Beam by TA-ESPI (TA-ESPI에 의한 외팔보의 탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Jung H.C.;Yang S.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1115-1119
    • /
    • 2005
  • The paper proposes the elastic modulus evaluation technique of a cantilever beam by vibration analysis based on time-average electronic speckle pattern interferometry (TA-ESPI) with non-contact and nondestructive and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of thin film are Nano indentation test, Bulge test and Micro-tensile test and so on. They each have strength and weakness in the preparation of test specimen and the analysis of experimental result. ESPI has been developed as a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at a resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI is a clue to find the resonance frequency at each vibration mode shape. And the elastic modules of test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique is able to give the elastic modulus of materials through the simple processing of preparation and analysis.

  • PDF

Zoom-in X-ray Micro Tomography System

  • Chun, In-Kon;Lee, Sang-Chul;Park, Jeong-Jin;Cho, Min-Hyoung;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.295-300
    • /
    • 2005
  • We introduce an x-ray micro tomography system capable of high resolution imaging of a local region inside a small animal. By combining two kinds of projection data, one from a full field-of-view (FOV) scan of the whole body and the other from a limited FOV scan of the region of interest, we have obtained zoomed-in images of the region of interest without any contrast a nomalies. We have integrated a micro tomography system using a micro-focus x-ray source, a $1248\times1248$ flat-panel x-ray detector, and a precision scan mechanism. Using the cross-sectional images taken with the zoom-in micro tomography system, we measured trabecular thicknesses of femur bones in postmortem rats. To compensate the limited spatial resolution in the zoom-in micro tomography images, we used the fuzzy distance transform for the calculation of the trabecular thickness. To validate the trabecular thickness measurement with the zoom-in micro tomography images, we compared the measurement results with the ones obtained from the conventional micro tomography images of the extracted bone samples.

Nano-level High Sensitivity Measurement Using Microscopic Moiré Interferometry (마이크로 무아레 간섭계를 이용한 초정밀 변형 측정)

  • Joo, Jin-Won;Kim, Han-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • [ $Moir{\acute{e}}$ ] interferometry is an optical method, providing whole field contour maps of in-plane displacements with high resolution. The demand for enhanced sensitivity in displacement measurements leads to the technique of microscopic $moir{\acute{e}}$ interferometry. The method is an extension of the $moir{\acute{e}}$ interferometry, and employs an optical microscope for the required spatial resolution. In this paper, the sensitivity of $moir{\acute{e}}$ interferometry is enhanced by an order of magnitude using an immersion interferometry and the optical/digital fringe multiplication(O/DFM) method. In fringe patterns, the contour interval represents the displacement of 52 nm per fringe order. In order to estimate the reliability and the applicability of the optical system implemented, the measurements of rigid body displacements of grating mold and the coefficient of thermal expansion(CTE) for an aluminium block are performed. The system developed is applied to the measurement of thermal deformation in a flip chip plastic ball grid array package.

Performance Analysis of the NREL Phase IV Wind Turbine by CFD (CFD에 의한 NREL Phase IV 풍력터빈 성능해석)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.652-655
    • /
    • 2008
  • Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-${\varepsilon}$ model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(k-${\varepsilon}$) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

  • PDF

An Approach to Estimate Dielectric Constant of Low-Loss Materials Using Dielectric Slab Loaded Cylindrical Cavity Resonators (유전체 슬랩이 삽입된 원통형 공진기를 이용한 저손실 물질의 유전 상수 측정)

  • Lee, Won-Hui
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1115-1121
    • /
    • 2008
  • In this paper, dielectric slab loaded cylindrical cavity resonator measurement technique is presented to determine the dielectric constant of a dielectric material. The dielectric constant is measured by the resonant frequency deviation of empty and dielectric slab loaded cavity. Characteristic equations are derived by th exact field analysis. The measurement configurations are formed using HP8719A vector network analyzer and an experimental cylindrical metallic cavity with circular cross-section. The validity of the theory is confirmed by experiments and CST MWS 4.0(3D simulator). The results were in the whole satisfactory. The measured dielectric constant of teflon and bakelite are 2.03 and 4.44, respectively.

Computer vision-based remote displacement monitoring system for in-situ bridge bearings robust to large displacement induced by temperature change

  • Kim, Byunghyun;Lee, Junhwa;Sim, Sung-Han;Cho, Soojin;Park, Byung Ho
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.521-535
    • /
    • 2022
  • Efficient management of deteriorating civil infrastructure is one of the most important research topics in many developed countries. In particular, the remote displacement measurement of bridges using linear variable differential transformers, global positioning systems, laser Doppler vibrometers, and computer vision technologies has been attempted extensively. This paper proposes a remote displacement measurement system using closed-circuit televisions (CCTVs) and a computer-vision-based method for in-situ bridge bearings having relatively large displacement due to temperature change in long term. The hardware of the system is composed of a reference target for displacement measurement, a CCTV to capture target images, a gateway to transmit images via a mobile network, and a central server to store and process transmitted images. The usage of CCTV capable of night vision capture and wireless data communication enable long-term 24-hour monitoring on wide range of bridge area. The computer vision algorithm to estimate displacement from the images involves image preprocessing for enhancing the circular features of the target, circular Hough transformation for detecting circles on the target in the whole field-of-view (FOV), and homography transformation for converting the movement of the target in the images into an actual expansion displacement. The simple target design and robust circle detection algorithm help to measure displacement using target images where the targets are far apart from each other. The proposed system is installed at the Tancheon Overpass located in Seoul, and field experiments are performed to evaluate the accuracy of circle detection and displacement measurements. The circle detection accuracy is evaluated using 28,542 images captured from 71 CCTVs installed at the testbed, and only 48 images (0.168%) fail to detect the circles on the target because of subpar imaging conditions. The accuracy of displacement measurement is evaluated using images captured for 17 days from three CCTVs; the average and root-mean-square errors are 0.10 and 0.131 mm, respectively, compared with a similar displacement measurement. The long-term operation of the system, as evaluated using 8-month data, shows high accuracy and stability of the proposed system.

A Whole Cell Bioluminescent Biosensor for the Detection of Membrane-Damaging Toxicity

  • Park, Sue-Hyung;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.59-62
    • /
    • 1999
  • The recombinant bacteria strain DPD2540, containing a fabA::luxCDABE fusion, was used to detect the toxicity of various chemicals in this study. Membrane damaging agents such as phenol, ethanol, and cerulenin induced a rapid bioluminescent response from this strain. Other toxic agents, such as DNA-damaging or oxidative-damaging chemicals, showed a delayed bioluminescent response in which the maximum peak appeared over 150 min after induction. This strain was also tested for measurement of toxicity in field samples such as wastewater and river water effluents.

  • PDF