• Title/Summary/Keyword: Wheel surface speed

Search Result 167, Processing Time 0.026 seconds

A Couple Vibration Analysis of Railway Track System with Consideration of Contact Stiffness (접촉 강성을 고려헌 차량-레일계의 연성 진동 해석)

  • 류윤선;조희복;김사수
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.953-958
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF

A study on grinding and process design of Constant Velocity (등속조인트의 공정설계 및 연삭에 관한 연구)

  • Kim, Woo-Kang;Ko, Jun-Bin;Byun, Dong Hae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.8-13
    • /
    • 2010
  • The constant velocity internal grinding is a popular process for studying axle machine design and process in automobile industry. In this study, The program which gives the data of wheel size and truing diameter of ball groove is developed. As a result I obtained the data of grinding conditions makes good surface roughness get a grinding conditions. The grinding characteristics and conditions of constant velocity joint were investigated with respect to grinding feed, cutting depth, grinding time. At machine failure, the results were suddenly increased and the detailed surfaces were extremely obtained. Grinding condition was big more affected by grinding depth, grinding speed and grinding time.

High Precision and Effective Grinding using Super Abrasives and ELID (초연삭입자와 ELID를 이용한 고정밀 고능률 연삭가공)

  • Koo, Yang;Kim, Gyung-Nyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.25-32
    • /
    • 2003
  • In this study, the grinding characteristics of CBN wheels, such as grinding force and surface roughness, have been compared and analyzed from various working conditions of spindle speed and depth of cut. To actualize high efficient grinding at ceramic and silicon nitride material, electrolytic in-process dressing (ELID) method has been applied at metal bonded diamond and CBN wheels. Super precision grinding using ductile mode at difficult-ta-cut materials could be performed.

  • PDF

A Coupled Vibration Analysis of Railway Track System with Consideration of Contact Stiffness (접촉강성을 고려한 차량-레일계의 연성진동해석)

  • 류윤선;조희복;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.241-246
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system. The dynamic responses of elastically supported infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF

A Study on Grinding for Inner Race (내륜 연삭에 관한 연구)

  • Kim, Woo-Kang;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.46-49
    • /
    • 2011
  • The grinding is a popular process for studying constant velocity joint and process in automobile industry. In this study, The study gives the data of wheel type and grinding of inner race is developed. As a result I obtained the data of grinding conditions makes good surface roughness get a grinding conditions. The grinding characteristics and conditions of inner race were investigated with respect to grinding feed, cutting depth, grinding time. The results were suddenly increased and the detailed surfaces were extremely obtained. Grinding condition was big more affected by grinding time, grinding speed and grinding depth.

The Reduction Case of Occurrence of Abnormal Wearing of Rail in Compound Curve Part (복심곡선 레일이상마모 발생 저감 사례)

  • Kim, Wan-Sool
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1097-1106
    • /
    • 2007
  • Rail provides running tract for train and broadly and widely conveys the weight of the train exerted from the train wheels that the rail directly supports onto the cross tie and roadbed, and supports the cross-sectional pressure exerted by centrifugal force at curvatures. That is, stationary rail provides surface on which dynamic train runs and guarantees cross-sectional resistance to enable the vertical snake motion of the train wheels as well as to maintain lateral force at curvatures. Rail provides running surface on which train wheels can run smoothly, and secures vertical and lateral force. However, it undergoes continuous destructive reactions (wearing and damages) and abrasion of the cladding by the train wheels. It is obvious that wearing will result when two metal parts act against each other. However, occurrence of abnormal wearing such as rapid wearing of the rail side due to complex generation of various mechanisms at the contact surface between the rail and train wheel flange. It is not easy to simply examine the causes of occurrence of abnormal wearing of rail and train wheel flange. Although countless number of academicians and specialists are conducting researches on abnormal wearing of rail and vertical wearing of train wheels, I believe it is too early to argue on pros and cons due to insufficiency of officially verified information on the issue. This review will be focusing on the examples of repairs that reduced the generation of abnormal wearing of rail by reviewing and improving characteristics of wearing and slack, speed of the train and cant as well as status of lubricator by choosing the compound curves present in the section between the $Anguk{\sim}Jongno3-ga$ Stations of the Route No. 3 among the compound curve tracks of the Seoul Metro Routes No. 3 & 4 at which abnormal wearing is generated continuously.

  • PDF

Selecting Optimal Dressing Parameters of Ultra-precision Centerless Grinding Based on the Taguchi Methodology (다구찌 방법론에 근거한 초정밀 센터리스 연삭의 최적 드레싱 가공 조건 선정)

  • Chun Y.J;Lee J.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.108-113
    • /
    • 2005
  • In this study, rotary type diamond dressing system for ultra-precision centerless grinding for ferrule was developed at the first time and experiments were conducted with AE sensor and hall sensor system to verify the optimum dressing condition for ultra-precision centerless grinding for ferrule. The correlations with the condition of dressing are evaluated by AE signal analysis with root mean square (RMS) and frequency analysis. And current signals from hall sensor are also studied as a factor of dressing optimum condition selection. Dressing process was conducted to investigate the effects of depth of cut, rotating speed, and the number of overlap to select the optimum condition of rotary dressing system of ultra-precision centerless grinding machine for ferrule fabrication. In order to verify the optimum condition of dressing, AE and current signals were compared with the surface quality of dressing wheel and grinding wheel for ultra-precision ferrule grinding. All of these experiments were completed by Taguchi Methodology to reduce experimental time. Hence, the optimum condition of rotary dressing system for ultra-precision centerless grinding for ferrule fabrication can be selected following to the experiment result from signals of AE and hall sensor.

  • PDF

Benchmark Results on the Linearized Equations of Motion of an Uncontrolled Bicycle

  • Schwab A. L.;Meijaard J. P.;Papadopoulos J. M.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.292-304
    • /
    • 2005
  • In this paper we present the linearized equations of motion for a bicycle as a benchmark. The results obtained by pencil-and-paper and two programs are compared. The bicycle model we consider here consists of four rigid bodies, viz. a rear frame, a front frame being the front fork and handlebar assembly, a rear wheel and a front wheel, which are connected by revolute joints. The contact between the knife-edge wheels and the flat level surface is modelled by holonomic constraints in the normal direction and by non-holonomic constraints in the longitudinal and lateral direction. The rider is rigidly attached to the rear frame with hands free from the handlebar. This system has three degrees of freedom, the roll, the steer, and the forward speed. For the benchmark we consider the linearized equations for small perturbations of the upright steady forward motion. The entries of the matrices of these equations form the basis for comparison. Three diffrent kinds of methods to obtain the results are compared : pencil-and-paper, the numeric multibody dynamics program SPACAR, and the symbolic software system Auto Sim. Because the results of the three methods are the same within the machine round-off error, we assume that the results are correct and can be used as a bicycle dynamics benchmark.

Tribological Failure Study of Manual Transmissions in Front Engine and Front Wheel Drive Vehicle (전륜구동 수동변속기에 대한 트라이볼로지적 고장사례 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.285-290
    • /
    • 2008
  • The purpose of this paper is to present the case study of tribological failure analysis on the gear damages, oil leakage, and sealant sealing in a manual transmission of front engine and front wheel drive vehicle. The manual transmission is to change the speed range and direction of the engines depending on the driving conditions by friction driving forces with input and output gear system. The material property and surface roughness of the gears are strongly related to the gear noise and micro-vibration, oil leakage and wear, which may decrease the real contact area of the gear and the strength of the oil film thickness between the driving gear and driven one. The O-ring damage of speedometer driven gear and bad sealant sealing of oil pan may produce oil leakage through the contact surfaces, which cause the oil shortage and seizure on the sliding surfaces of the transaxle gears. In the failure case study, the proper repair working and good lubrication are very important for the long life of the transaxle without any tribological failures and oil leakage.

Estimation Study on the Wheel/Rail Adhesion Coefficient of Railway Vehicles Using the Scaled Adhesion Tester (축소 점착시험기를 이용한 휠/레일의 점착계수 추정에 관한 연구)

  • Kim, Min Soo;Hee Kim, Kyung;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.603-609
    • /
    • 2015
  • Railway vehicles driven by wheels obtain force required for propulsion and braking by adhesive force between wheels and rails, this adhesive force is determined by multiplying adhesion coefficient of the friction surface by the applied axle load. Because the adhesion coefficient has a peak at certain slip velocity, it is important to determine the maximum values of the friction coefficient on the contact area. But this adhesive phenomenon is not clearly examined or analyzed. Thus we have developed new test procedure using the scaled adhesion test-bench for analyzing of the adhesion coefficient between wheel and rail. This adhesion test equipment is an experimental device that contacts mutually with twin disc which are equivalent to wheels and rails of railway vehicles.