• Title/Summary/Keyword: Weyl symbol

Search Result 6, Processing Time 0.022 seconds

Generalization of the Spreading Function and Weyl Symbol for Time-Frequency Analysis of Linear Time-Varying Systems

  • Iem, Byeong-gwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.628-632
    • /
    • 2001
  • We propose time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random processes. Obtained warping the narrowband Weyl symbol (WS) and spreading function (SF), the new TF tools are useful for analyzing LTV systems and random processes characterized by generalized frequency shifts, This new Weyl symbol (WS) is useful in wideband signal analysis. We also propose WS an tools for analyzing systems which produce dispersive frequency shifts on the signal. We obtain these generalized, frequency-shift covariant WS by warping conventional, narrowband WS. Using the new, generalized WS, we provide a formulation for the Weyl correspondence for linear systems with instantaneous of linear signal transformation as weighted superpositions of non-linear frequency shifts on the signal. Application examples in signal and detection demonstrate the advantages of our new results.

  • PDF

Formulation of New Hyperbolic Time-shift Covariant Time-frequency Symbols and Its Applications

  • Iem, Byeong-Gwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1E
    • /
    • pp.26-32
    • /
    • 2003
  • We propose new time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random processes showing hyperbolic TF structure. Obtained through hyperbolic warping the narrowband Weyl symbol (WS) and spreading function (SF) in frequency, the new TF tools are useful for analyzing LTV systems and random processes characterized by hyperbolic time shifts. This new TF symbol, called the hyperbolic WS, satisfies the hyperbolic time-shift covariance and scale covariance properties, and is useful in wideband signal analysis. Using the new, hyperbolic time-shift covariant WS and 2-D TF kernels, we provide a formulation for the hyperbolic time-shift covariant TF symbols, which are 2-D smoothed versions of the hyperbolic WS. We also propose a new interpretation of linear signal transformations as weighted superposition of hyperbolic time shifted and scale changed versions of the signal. Application examples in signal analysis and detection demonstrate the advantages of our new results.

Wideband Time-Frequency Symbols and their Applications

  • Iem, Byeong-Gwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.563-567
    • /
    • 2001
  • We generalize the widebane P0-weyl symbol (P0WS) and the widebane spreading function (WSF) using the generalized warping function . The new generalized P0WS and WSF are useful for analyzing system and communication channels producing generalized time shifts. We also investigated the relationship between the affine Wey1 symbol(AWS) and the P0WS. By using specific warping functions, we derive new P0WS and WSF as analysis tools for systems and communication channels with non-linear group delary characteristics. The new P0WS preserves specific types of changes imposed on random processes. The new WSF provides a new interpretation of output of system and communication channel as weighted superpositions of non-linear time shifts on the input. It is compared to the conventional method obtaining output of system and communication channel as a convention integration of the input with the impulse response of the system and the communication channel. The convolution integration can be interpreted as weighted superpositions of liner time shifts on the input where the weight is the impulse response of the system and the communication channel. Application examples in analysis and detection demonstrate the advantages of our new results.

  • PDF

A PRODUCT FORMULA FOR LOCALIZATION OPERATORS

  • Du, Jing-De;Wong, M.M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.77-84
    • /
    • 2000
  • The product of two localization operators with symbols F and G in some subspace of $L^2(C^n)$ is shown to be a localization operator with symbol in $L^2(C^n)$ and a formula for the symbol of the product in terms of F and G is given.

  • PDF

SEMI-QUASITRIANGULARITY OF TOEPLITZ OPERATORS WITH QUASICONTINUOUS SYMBOLS

  • Kim, In-Hyoun;Lee, Woo-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • In this note we show that if $T_{\varphi}$ is a Toeplitz operator with quasicontinuous symbol $\varphi$, if $\omega$ is an open set containing the spectrum $\sigma(T_\varphi)$, and if $H(\omega)$ denotes the set of analytic fuctions defined on $\omege$, then the following statements are equivalent: (a) $T_\varphi$ is semi-quasitriangular. (b) Browder's theorem holds for $f(T_\varphi)$ for every $f \in H(\omega)$. (c) Weyl's theorem holds for $f(T_\varphi)$ for every $f \in H(\omega)$. (d) $\sigma(T_{f \circ \varphi}) = f(\sigma(T_varphi))$ for every $f \in H(\omega)$.

  • PDF

A NOTE ON SCATTERING OPERATOR SYMBOLS FOR ELLIPTIC WAVE PROPAGATION

  • Kim, Jeong-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.349-361
    • /
    • 2002
  • The ill-posed elliptic wave propagation problems can be transformed into well-posed initial value problems of the reflection and transmission operators characterizing the material structure of the given model by the combination of wave field splitting and invariant imbedding methods. In general, the derived scattering operator equations are of first-order in range, nonlinear, nonlocal, and stiff and oscillatory with a subtle fixed and movable singularity structure. The phase space and path integral analysis reveals that construction and reconstruction algorithms depend crucially on a detailed symbol analysis of the scattering operators. Some information about the singularity structure of the scattering operator symbols is presented and analyzed in the transversely homogeneous limit.