• 제목/요약/키워드: Welding wire diameter

검색결과 22건 처리시간 0.018초

용접 와이어 직경이 용접 상태 검출에 미치는 영향 (A Study on the effect of welding wire diameter on the welding quality detection)

  • 류정탁
    • 한국산업정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.39-44
    • /
    • 2016
  • 본 연구에서는 용접전류 및 용접전압 신호처리에 의한 용접 상태 검출에 있어 용접 와이어의 직경이 미치는 영향에 관하여 연구하였다. 실험을 위하여 인위적으로 모재의 간격을 용접 와이어보다 작은 경우와 큰 경우에 대하여 분석하였다. 사용된 용접 와이어의 직경은 1.2 mm이었으며 인위적으로 형성한 용접 모재 사이의 간격은 1.0 mm와 2.0 mm 두 종류를 사용하였다. 실험결과 용접 와이어의 직경보다 큰 용접 결함 요인에 대하여서는 용접전류 및 용접전압의 변화를 감지할 수 있으나 직경보다 작은 용접 결함 요인에 대하여서는 용접전류 및 용접전압의 변화를 감지할 수 없었다.

용접 와이어를 사용한 Al5052 $CO_2$ 레이저 용접 (Al5052 Welding by $CO_2$ Laser using Filler Wire)

  • 박기영;이경돈;김주관
    • 한국레이저가공학회지
    • /
    • 제5권1호
    • /
    • pp.13-21
    • /
    • 2002
  • Compared to conventional welding process, laser welding does not use additional filler wire generally. However, if laser welding uses the filler wire, the applicability of the method can be broaden. When laser welding uses the filler wire, it is possible to enhance gap bridging ability and to prevent cracking in weld pool by metallurgical control. In this study, we had optimal condition and experimented gap bridging capability for butt welding with 2㎜ Al5052 alloys using the filler wire feeder. As the experimental parameters, wire feed rate and wire diameter are considered and then the performance of wire feed is evaluated under various filler wire welding conditions.

  • PDF

응력제거 열처리한 Mg-AZ31B 합금 TIG 용접부의 기계적 특성과 미세조직 변화에 미치는 용접조건의 영향 (The Influence of Welding Conditions on Mechanical Properties and Microstructural Change of TIG Welded Joint in Stress Relieve Heat Treated Mg-AZ31B Alloy)

  • 김용길;정동석;배차헌
    • 열처리공학회지
    • /
    • 제17권4호
    • /
    • pp.230-235
    • /
    • 2004
  • Present work was carried out to investigate the influence of welded conditions, such as welding current, diameter of welding wire on the microstructural change and mechanical properties of TIG welded joint in AZ31B Mg alloy. It was found that good and sound welded joint was achieved in all welding conditions. The grain size decreased with increasing welding current and decreasing diameter of welding wire. Also, the second phases were homogeneously distributed in the grain and grain boundary as decreasing welding current and diameter of welding wire. The ${\beta}$ discontinuos precipitates were observed in the welded joint, but this microstructure has not been reported by previous researchs in AZ31B Mg alloy. The hardness value is affected by the existence state of the second phase and the hardness of the welded joint region is lower than the other regions in welded AZ31B Mg alloy. The strength of the welded joint region was influenced by the grain size and has more than 90%, compared to that of ASTM standard specification.

Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

  • Lee, Hee-Keun;Chun, Kwang-San;Park, Sang-Hyeon;Kang, Chung-Yun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.770-783
    • /
    • 2015
  • Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

납착 방법에 따른 교정용 와이어의 기계적 특성 비교 (A Comparative Evaluation of Mechanical Properties of Orthodontic Wire Joints according to Soldering Methods)

  • 이혜진;홍민호
    • 대한치과기공학회지
    • /
    • 제36권4호
    • /
    • pp.239-246
    • /
    • 2014
  • Purpose: The purpose of this study was to compare the tensile strength and mechanical properties of orthodontic wire joints made by gas soldering and laser welding, with and without filling material, to identify the effectiveness and potential clinical application of laser welded orthodontic wires. Methods: Three joint configurations of orthodontic wire were used: diameter 0.9 to 0.9 mm wire, diameter 0.9 to 0.5 wire and diameter 0.9 mm wire to band. The joints were made using three different methods: gas soldering, laser welding with and without filling material. For each kind of joint configuration or connecting method 7 specimens were carefully produced. The tensile strengths were measured with a universal testing machine (Zwick/Roell, Instron, USA). The hardness measurements were carried out with a hardness tester(Future-Tech Co. Tokyo, Japan). Data were analyzed by AVOVA(p= .05) and Turkey HD test(p= .05). Results: In all cases, gas soldering joints were ruptured on a low level on tensile bonding strength. Significant differences between laser welding and gas soldering(p< .05) were found in each joint configuration. The highest tensile strength means were observed for laser welding, with filling material, of 0.9 to 0.9 mm wire joint. Conclusion: In conclusion, the elastic modulus and tensile strength means of laser soldering with filling material were the highest, and the tensile strength means of laser soldering were higher than those of gas soldering.

HIGH-FREQUENCY AND COMPLEX VIBRATION ULTRASONIC WIRE BONDING SYSTEMS

  • Jiromaru Tsujino;Tetsugi Ueoka;Takahiro Mori;Koichi Hasegawa;Daisuke Kadota
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.824-829
    • /
    • 1994
  • High-frequency and complex vibration ultrasonic wire bonding systems are propsed and their welding characteristic are studied. Ultrasonic wire bonding is used widely for joining thin connecting wire of various electronic devices including IC or LSI. Conventional bonding systems use vibration frequency of 40 or 60 kHz and linear vibration welding tips. Complex vibration welding tip which vibrates in elliptical to circular or rectangular to square in the same or different frequency is effective to join welding specimens in shorter welding time and under smaller vibration amplitude, and furthermore high-frequency systems such as 90, 120, 190 kHz are also significantly effective. High-frequency and complex vibration welding system of 90, 120 and 190 kHz are designed. Welding characteristics of these systems are found very superior than a conventional system. Welding specimens of aluminum wire of 0.1mm diameter are successfully.

  • PDF

용접 조건이 소형 용기용 Sn 도금 강재의 와이어 심 용접성에 미치는 영향 (Effect of Welding Parameters on Wire Seam Weldability of Tin Coated Steels for Small Containers)

  • 김기철;이기호;이목영
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.74-83
    • /
    • 1997
  • Effect of welding parameters such as current, speed and electrode pressure on the weld quality of tin coated steels for small containers was discussed in this paper. Welding was performed with low frequency wire seam welding system which was loaded with 1.5mm in diameter copper wire electrode. The welding parameters were monitored at the position close to the welding spot so as to minimize the instrumentation error, and the signals were stored into a digital data acquisition system before analysis. Results showed that critical current for sufficient nugget size increased as the base material thickness increased, while the width of the optimum welding range was reduced. The acceptable welding condition derived from this study was found to be effective within the thickness range of $\pm$10% of the nominal (0.25mm) thickness. Tin coating layer was proved not to affect seriously on the weld quality, i.e. strength and formability, since consumable wire electrode was used in this process. Test results also demonstrated that the welding current was thought to be the most effective parameter to form an acceptable weld, while welding speed or electrode pressure exerted less effect on the nugget formation. However, these two parameters played an important role because the former was related to the nugget overlap interval, and the latter, to the formation of expulsion during welding.

  • PDF

용접 비드 형상에 대한 용접공정 변수의 민감도 해석에 관한 연구 (A study on the sensitivity analysis of welding process parameters on weld bead geometry)

  • 이세환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.274-280
    • /
    • 1998
  • The welding technology and qualities are developed significantly, in recent years, in the use of automated processing technology and welding robot systems. But these automated welding technologies have many difficulties for finding the optimal welding parameter conditions. Because of the lack of mathematical model for determination of optimal welding process parameters. In this study, the sensitivity analysis of the empirical equations for finding weld bead width, height and penetration depth by using the published formulae. The selected major welding process parameters effected to weld bead geometries are the welding speed, current, voltage and weld wire diameter.

  • PDF

핀치이론의 수정 모델을 이용한 스프레이 모드의 해석 (Analysis of Spray Mode Using Modified Pinch Instability Theory)

  • 박아영;;김선락;유중돈
    • Journal of Welding and Joining
    • /
    • 제27권5호
    • /
    • pp.88-93
    • /
    • 2009
  • While the pinch instability theory (PIT) has been widely employed to analyze the spray transfer mode in the gas metal arc welding (GMAW), it cannot predict the detaching drop size accurately. The PIT is modified in this work to increase the accuracy of prediction and to simulate the molten tip geometry to be more physically acceptable. Since the molten tip becomes a cone shape in the spray mode, the effective wire diameter is formulated that the effective diameter is inversely proportional to current square. Modifications are also made to consider the finite length of the liquid column and current leakage through the arc. While the effective diameter influences drop transfer significantly, the current leakage has negligible effects. The effects of modifications on drop transfer are analyzed, and the predicted drop diameters show good agreements with the experimental data of the steel wire.

직선형 프로세스 파이프 내면 오버레이 GTAW 용접시스템 개발 (A Development of Overlay GTAW Welding System for Pipe Inside Straight Process)

  • 은종목;이영규
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.4-8
    • /
    • 2014
  • In this research, GTA overlay welding system is developed for inside of straight pipes in various diameter. It can be applied to oil, ship building and plant industry, especially pipes connected to pressure vessels, for the purpose of cost reduction by cladding inside of pipes with corrosion and heat resistant alloys such as stainless steel or Inconel. Developed system consists of GTA power source, torch, wire feeding system, automatic arc length adjusting device, CCD camera and cooling unit. Two types of pipe inside overlay welding system are developed. One is for maximum 3m pipe length with 3 inch ~ 12 inch pipe outer diameter. Another type can be applied to maximum 12m pipe length with 7 ~ 24 inch OD. Developed system successfully produced inside cladded pipe and the results are shown through cross sectional images of the pipes.