• Title/Summary/Keyword: Welding electrode

Search Result 243, Processing Time 0.024 seconds

Study on The Status of Welded Parts According to The Types of Shielding Gas in TIG Welding (TIG용접에서 실드가스 종류의 변화에 따른 용접부의 변화상태 고찰)

  • Kim, Jin-Su;Kim, Bub-Hun;Lee, Chil-Soon;Kim, Yohng-jo;Park, Yong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.38-43
    • /
    • 2015
  • Tungsten inert gas (TIG) welding is commonly used in industries that require airtightness, watertightness, oiltightness, and precision. It is a non-consumable welding method that is commonly used for the welding of non-ferrous metals, but it can be used to weld most metals. The methods of TIG welding can be divided into three types. The first, manual welding is done directly on the metal by a welder with a torch. The second, semi-automatic welding, gets help from a material supplying machine, but it is conducted by a welder. Lastly, automated welding is conducted fully by a machine during its process and operation. Depending on the selection of electrode, the amount of heat that is applied to the base material and the electrode rod changes and makes the shape of welded parts different. A direct-current positive electrode was used for this study. Through the change of shielding gas type on a structural steel (SS-400) that is commonly used in industry, the composition and shape changes in welded parts were detected after welding. The heat-affected area, hardness value, and tensile strength were also identified through hardness testing and tensile testing. In this study, it was found that the higher hardness value of the heat-affected is, the weaker the tensile strength becomes.

Evaluation of Corrosion Characteristics on Welding Part of Leakage Water Pipe by Underwater Welding Electrode (수중용접봉으로 용접한 누수 배관 용접부위의 부식 특성 평가)

  • Kim, Jin-Gyeong;Moon, Kyung-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.93-94
    • /
    • 2006
  • The repair welding of small leakage parts on the water pipeline in engine room is often and important factor in standby and emergency condition in a ship. So, the purpose of this study is to evaluate the corrosion characteristics of welding part of leakage water pipe in case of some underwater welding electrodes. The corrosion current density between welding metal and base metal was considerably different according to used underwater welding electrodes. In case of DC welding, its corrosion characteristics was better than that of AC welding.

  • PDF

A comparative study of constant current control and adaptive control on electrode life time for resistance spot welding of galvanized steels (용융아연도금 강판 저항 점 용접 시 정전류 및 적응제어 적용에 따른 연속타점 특성 평가 및 고찰)

  • Seo, Jeong-Chul;Choi, Il-Dong;Son, Hong-Rea;Ji, Changwook;Kim, Chiho;Suh, Sung-Bu;Seo, Jinseok;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.47-55
    • /
    • 2015
  • With using adaptive control of the resistance spot welding machine, the advantage on electrode life time for galvanized steels has been addressed. This study was aimed to evaluate the electrode life time of galvanized steels with applying the constant current control and the adaptive control resistance spot welding process for a comparison purpose. The growth in diameter of electrode face was similar for both the constant current and the adaptive control up to 2000 welds. The button diameter was decreased with weld numbers, however, sudden increase in button diameter with use of the adaptive control after 1500 welds was observed. The peak load was continuously decreased with increasing number of welds for both the constant current and the adaptive control. The current compensation during a weld was observed with using the adaptive control after 1800 welds since the ${\beta}$-peak on dynamic resistance curve was detected at later weld time. The current compensation with adaptive control during resistance spot welding enhanced the nugget diameter at the faying interface of steel sheets and improved the penetration to thinner steel sheet.

A Study on the Effect of Preheating in Cold AC Arc Welding Process of the Cast Iron (주철의 냉간 시공 교류아크용접에서 예열효과에 관한 연구)

  • Kim, Jin-Gyeong;Kim, Young-Sik;Yu, Dae-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.729-735
    • /
    • 2007
  • AC cold arc welding process with AWS E Ni-CI and NiFe-CI is sometimes used to repair damaged cast iron parts in diesel engine room. But if some difference in hardness on welding zones, repaired parts would be cracked in a short. To overcome this default. this study is performed on varying preheating temperature of welding parts, selecting welding rod etc. Experimental results showed that difference in hardness on welding zones at $200^{\circ}C$ was less than $100^{\circ}C$ and less low current than high current. From this study we could conclude that repair welding at $200^{\circ}C$ preheating and low current as possible as welding in damaged cast iron parts was a little difference in hardness on welding zones.

Effect of some welding parameters on nugget size in electrical resistance spot welding

  • Savas, Omer
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.345-355
    • /
    • 2015
  • In this study, the effects of weld parameters on nugget size and tensile-shear strength of welding joint in electrical resistance spot welding of galvanized DP 600 steel sheets having 1.2 mm were investigated. Taguchi design method has been employed to examine the effects of five parameters of welding current, electrode pressure, welding time, clamping time and holding time by using the $L_{27}(5^3)$ orthogonal array. Results showed that the most effective parameters on tensile shear strength and the nugget size ratio (hn/dn) were found as welding current and welding time, whereas electrode pressure, clamping time and holding time were less effective factors. Max. 545 MPa strength was obtained through proposed optimum conditions by Taguchi technique.

An Experimental Study on the Arc Stability Improvement of Underwater Wet Welding with Flux Ingredients (피복성분에 의한 수중용접봉의 아크 안정성 개선에 관한 실험연구)

  • 김복인;노창석;정교헌;김민남
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.73-79
    • /
    • 2001
  • Underwater wet bead-on-plate welds were experimentally performed on 11mm thick SS400 steel plate as base metal by using six different types of flux coated electrodes of 3.2mm diameter. Two kinds of different flux coated wet arc electrodes (UW-1, UW-2) were individually designed flux materials, three kinds of the electrodes (E4301, E4311, E4313) were terrestrial electrodes and the another one (TN20) was an imported underwater wet welding electrode. As results, the individually designed flux coated underwater electrode, UW-2 and TN20 had a good starting and the excellent arc stability compared with other electrodes. No significant difference of bead appearance could be detected, but the slag detachability of TN20 electrodes was relatively undesirable. By rapid cooling rate, the hardness value and the portion of martensite of HAZ were increased, but it was considerably maintain stable for TN20 and UW-2 electrodes. The individually designed flux coated electrode, UW-2 could be used in practice for underwater bead welds.

  • PDF

Resistance Spot Welding Characteristics of Mg Alloy Applying Current Waveform Control (전류 파형 제어를 적용한 마그네슘 합금의 저항 점 용접 특성)

  • Choi, Dong-Soon;Hwang, In-Sung;Kim, Dong-Cheol;Ryu, Jae-Wook;Kang, Moon-Jin
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.70-75
    • /
    • 2014
  • In automotive industry, applying of Mg alloy to autobody has been issued recently as a light metal. But poor resistance spot weldability of Mg alloy is blocking commercialization. So studies on improving resistance spot weldability of Mg alloy is increasing continuously. For reduce loss of heat input during welding, inverter DC power source is considered because of short rise time to target welding current. But rapid rising of welding current can increase temperature rapidly in nugget and oxide film between electrode and base metal, and that causes generating expulsion on low welding current range. In this study, for increase optimum welding current range and prevent generating expulsion, applicate various types of welding current waveform controls during resistance spot welding. For analysis effects of each current waveform control, acceptable welding current regions according to electrode force and welding time is determined and lobe diagram is derived. In result, pre heat is proposed as optimum type of welding current waveform control.

A Study for the Improvement of Weld Quality Through Force Control of Servo Gun in Resistance Spot Welding using Robot (저항 점 용접 로봇에서 서보건의 가압력 제어를 통한 용접 강도 향상에 대한 연구)

  • Park, Young-Whan;Lee, Jong-Gu;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.6
    • /
    • pp.13-20
    • /
    • 2006
  • Resistance spot welding is widely used for joining sheet metals in the automotive manufacturing process. Recently, servo-gun is used to increase the productivity and precise control the acting force. However, force control mechanisms have not been investigated with servo-guns until now. In this paper, it is proved that servo-motor current is proportional to torque and by experiment, experimental equation between servo-motor current and electrode force was derived. Algorithm for feedback control of electrode force was suggested using current measurement. In addition, applying soft touch method to this system the impact between electrode and specimen, which is the problem of air gun, could be reduced. Indentation made the force decrease in holding time of resistance spot welding. In order to overcome this problem, force compensation using the servo gun was used and it improved weld strength in good welding current range.

Electric Resistance Heated Friction Stir Spot Welding of Overlapped Al5052 Alloy Sheets (중첩된 알루미늄 5052 합금판재의 전기저항가열 마찰교반점용접에 관한 연구)

  • Kim, T.H.;Jang, M.S.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.256-263
    • /
    • 2015
  • Electric resistance spot welding has been used to join overlapped steel sheets in automotive bodies. Recently to reduce weight in automotive vehicles, non-ferrous metals are being used or considered in car bodies for hoods, trunk lids, doors parts, etc. Various welding processes such as laser welding, self-piercing rivet, friction stir welding are being used. In the current study, a new electric resistance heated friction stir spot welding is suggested for the spot welding of non-ferrous metals. The welding method can be characterized by three uses of heat -- electric resistance heating, friction stir heating and conduction heating of steel electrodes -- for the fusion joining at the interfacial zone between the two sheets. The welding process has variables such as welding current, diameter of the steel electrodes, revolutions per minute (rpm) of the friction stir pin, and the insert depth of the stir pin. In order to obtain the optimal welding variables, which provide the best welding strength, many experiments were conducted. From the experiments, it was found that the welding strength could be reached to the required production value by using an electrode diameter of 10mm, a current of 7.6kA, a stirring speed of 400rpm, and an insert depth of 0.8mm for the electric resistance heated friction stir spot welding of 5052 aluminum 1.5mm sheets.

A Study on the Development of Insulated Electrode Tip for Spot Welding to Reduce Indentation (점용접 시 압흔 깊이 감소를 위한 절연팁 개발에 관한 연구)

  • 서승일;장상길
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.42-47
    • /
    • 2003
  • Stainless rolling stocks are usually fabricated by spot welding process without painting. Indentation on the surface of the car body after spot welding injures the beauty of the stainless rolling stocks. In this study, insulated electrode tips to reduce the indentation are developed and applied to the actual spot welding works. The developed tips are composed of head, neck, hole for cooling water, body and resistance material. They provide large surface contact area with the base materials during spot welding and enhance the current density by necking. Experimental results using the developed tips show that small indentation and sufficient tensile shear strength is produced due to large contact area and enhanced current density.