• 제목/요약/키워드: Welding cost

검색결과 327건 처리시간 0.03초

합체박판 기술을 적용한 고장도 경량도어 최적 설계 (Optimal Design of Lightweight High Strength Door with Tailored Blank)

  • 송세일;박경진
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.174-185
    • /
    • 2002
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. Tailored blanks offer the opportunity to decrease door weight, reduce manufacturing costs, and improve door stiffness. Optimization technology is applied to the inner panel of a door which is made by tailored blanks. The design of tailored blanks door starts from an existing door. At first, the hinge reinforcement and inner reinforcement are removed to use tailored blanks technology. The number of parts and the welding lines are determined from intuitions and the structural analysis results of the existing door. Size optimization is carried out to find thickness while the stiffness constraints are satisfied. The door hinge system is optimized using design of experiment approach. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

Air Bulging을 이용한 열간 알루미늄 성형에 관한 연구 (A Study on Al Hot Forming Using Air Bulging)

  • 박동환;김태준
    • 소성∙가공
    • /
    • 제24권1호
    • /
    • pp.20-27
    • /
    • 2015
  • Hot tensile tests were conducted at different temperatures ranging from $20^{\circ}C$ to $550^{\circ}C$ to evaluate the mechanical properties of Al5052 seamless tubes. Such tubes can provide the technological foundation for complex forming using hot air bulging. Hot air bulging is one of the recently developed hydroforming techniques and it has some limitations in terms of cycle times. The benefits of hot air bulging are weight and cost savings through part consolidation and reduced post-forming processes such as welding and piercing. In order to extend the forming limits of Al lightweight material hot air bulging was investigated. A heated tube was placed in a heated die and sealed at the ends by sealing cylinders. The heated tube was subsequently expanded against the die cavity wall by internal pressure using air medium. The results of the current study show that axial feeding speed and air pressure have an effect on the formability of Al tubes during air bulging at elevated temperatures.

Air Bulging을 이용한 열간 알루미늄 성형에 관한 연구 (Study on Al Hot Forming using Air Bulging)

  • 박동환;강성수;김병년
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.145-147
    • /
    • 2009
  • The benefits of hydroforming technology are known as weight and cost savings through part consolidation and reduced post-forming processes such as welding and piercing. Hydroforming technology has some weaknesses in terms of process cycle times. But, as the hydraulic system and process designs are continuously developed, the cycle time is also reduced to acceptable and competitive levels. Hot air bulging is one of recently developed hydroforming techniques. Hot air bulging in order to further extend the forming degrees of Al lightweight material is investigated. A heated tube is placed in a heated die and sealed at the ends by sealing cylinders. The tube is subsequently expanded against the die cavity wall by internal pressure provided by air medium. The result of this study shows that axial feeding speed and air pressure have an effect on formability of Al air bulging at elevated temperature.

  • PDF

Characteristics of copper wire wedge bonding

  • Tian, Y.;Zhou, Y.;Mayer, M.;Won, S.J.;Lee, S.M.;Cho, S.Y.;Jung, J.P.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.34-36
    • /
    • 2005
  • Copper wire bonding is an alternative interconnection technology that serves as a viable and cost saving alternative to gold wire bonding. In this paper, ultrasonic wedge bonding with $25{\mu}m$ copper wire on Au/Ni/Cu metallization of a PCB substrate was performed at ambient temperature. The central composite design of experiment (DOE) approach was applied to optimize the copper wire wedge bonding process parameters. After that, pull test of the wedge bond was performed to study the bond strength and to find the optimum bonding parameters. SEM was used to observe the cross section of the wedge bond. The pull test results show good performance of the wedge bond. Additionally, DOE results gave the optimized parameter for both the first bond and the second bond. Cross section analysis shows a continuous interconnection between the copper wire and Au/Ni/Cu metallization. The diffusion of Cu into the Au layer was also observed.

  • PDF

도상이 장대 레일의 선형 온도 좌굴에 미치는 영향 (Effect of Track Resistance on Linear Thermal Buckling Characteristics of CWR)

  • 강영종;임남형;신정렬;양재성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.580-587
    • /
    • 1998
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads and speeds by improving rolling, welding, and fastening technology, Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal and vehicle loads. Thermal loads are caused by an increase in the temperature of railway track. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method(FEM). The finite element discretization is used with a total of 14 degrees of freedom for each rail element. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented in the paper.

  • PDF

PC일체형 폴리프로필렌 방수시트 공법의 현장적용성 평가 (Evaluation of Field Application of PC Integrated Polypropylene Waterproof Sheet)

  • 김대규;윤종구;신홍철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.6-7
    • /
    • 2019
  • In order to solve problems such as scattered dust, dust and chemicals harmful to the human body, workability in a confined space, quality performance, and the like generated during the field construction of the conventional waterproof sheet construction method, a waterproof sheet is used as a PC formwork, Which is produced by pouring concrete after PC installation, and evaluating the applicability of the development method in comparison with the construction method of polypropylene waterproof sheet construction method and the construction period, safety, quality, construction cost.

  • PDF

서스펜션 링크의 부시 압입에 따른 내구 영향도 연구 (Study of Durability Effect Parameter in Inserting Bush into Suspension Link)

  • 이규식
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권2호
    • /
    • pp.143-149
    • /
    • 2017
  • Purpose: In recent years, weight reduction for improving fuel efficiency of the vehicle and cost reduction have been developed. The structure of suspension link is widely used as a single plate press structure which can reduce process and weight compared to existing pipe welding method. However, it was found that the lifetime of a single plate press structure is determined by initial defects that occurred during initial manufacturing rather than fatigue damage caused by driving. Methods: I research the mechanism of failure phenomenon of the single plate press assist arm of rear wheel. In addition, I investigate durability effect parameters to determine the link lifetime in inserting bush into single plate press process through durability test. Conclusion: I discover significant durability effect parameter in inserting bush into single plate press process. It is expected that the durability can be improved by suggesting a bush inserting process inspection guide for similar suspension link like single plate press structure.

알루미늄 압출재를 적용한 2층 열차 차체의 기초설계 및 구조강도해석 (The Concept Design and Structural Strength Analysis for Double-Deck Train Carbody using Alluminum Extruded Panels)

  • 황원주;김형진;강부병;허현무
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.364-369
    • /
    • 2002
  • The purpose of this paper is to introduce the concept design and the structural strength of the double-deck rolling stock vehicle. Aluminum is very useful material for the carbody structure due to its characteristic of light weight. Large alumillum extrusion profiles(panels) have toe of merits such as easy production of complicated shapes, reduction of welding and cutting lines, and cutting down the labor cost. AED type is being applied to the standard EMUs and the EMUs Kwangju subway in Korea. Light material recommended the double-deck rolling stock vehicle because the center of gravity of the train is higher and its weight is heavier than those of the normal vehicle. So we applied the technology of the large aluminum extrusion profiles(panels) to the double-deck vehicle. We performed the structural strength analysis and examined its safety.

  • PDF

초음파를 이용한 용접부 핸디 스캔 검사기 개발 (Developement of Ultrasonic Handy Scanner for Welding Inspection)

  • 강동명
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.14-18
    • /
    • 2005
  • The ultrasonic handy scanner to be developed in this research is a nondestructive inspection equipment with various facility. The ultrasonic inspection is the technique area which apply range is increasing greatly with IT. The purpose of this research is development of a ultrasonic handy scan inspection device with the utility in a work spot. The ultrasonic handy scanner to be developed with portability in this research is able to carry out the spot inspection. It can contribute to the quality improvement, cost reduction and safety design.

특징형상을 이용한 선각설계

  • 이경식;최영;강원수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.559-564
    • /
    • 1995
  • Feature based design approach is widely studied for the application of mechanical part design and process planning. Mechanical parts are associated with volumetric form features in nature. Therfore, one of the important characteristics that reside in the form feature research until now is that features have been studied in connection with CAPP for material removal. We studied the application of feature based design for ship structure design. Ship structure has interesting nature that tis distinct from mechanical parts. Among these are multiple cell structure, non-volumetric part and production by welding or assembling. An idea of applying feature based design paradigm for design, process planning, cost analysis and engineering calculation was shown. Non-manifold geometric modeler ACIS was adopted to fully benefit from the non-manifold nature of ship structure.