• 제목/요약/키워드: Weld-zone

검색결과 659건 처리시간 0.02초

18% Ni 마레이징강의 용접 잔류 응력에 미치는 열처리의 영향 (Effect of Heat Treatments on Welding Residual Stresses of 18% Ni Maraging Steel)

  • 배강열;나석주;김원훈
    • Journal of Welding and Joining
    • /
    • 제11권2호
    • /
    • pp.53-61
    • /
    • 1993
  • One of the most interesting and promising steel groups considered for the rocket motor case, aircraft and aerospace component is the maraging(martensitic plus aging) nickel steel, developed by International Nickel Company in 1960. This material attains a very high strength with good fracture toughness by simple heat treatments which do not involve a quenching. Full strength can be obtained by "maraging" at 480.deg. for 3 hours for the 18% Ni maraging steel. The effect of heat treatments was considered on the residual stress field of 18% Ni maraging steel weldments. In experiments, various heat treatments such as stress relieve heat treatment, aging and solution heat treatment were carried out of the GTA weldments and the residual stresses were measured by using the hole drilling method. Whereas the conventional pattern of residual stress shows the stresses to be maximum along the weld centerline with tensile stress extending into the heat affected zone, the pattern in maraging steels shows the centerline stress to be compressive. After welding, a series of aging, solution heat treatment and solution heat treatment plus aging treatment were carried out and the residual stresses were measured to reveal that these heat treatments almost completely remove the welding residual stresses.

  • PDF

HSA800 강재의 SAW 용접성 및 이음성능 연구 (A Study for the Weldability and Welded Joint Performance on the SAW of HSA800 Steel)

  • 최영한;김상섭
    • 한국강구조학회 논문집
    • /
    • 제29권1호
    • /
    • pp.37-48
    • /
    • 2017
  • 본 연구에서는 HSA800 60mm 강재의 SAW 용접성 및 이음성능을 확인하기 위해 후열처리 1시간과 2시간에 대한 SAW 공시체를 제작하여 9종의 시험을 실시하였다. 용접부 충격시험, 굽힘시험, 경도시험, 매크로조직시험, 마이크로조직시험 결과 SAW PH1 및 PH2는 양호한 용접부로 나타났으나, 화학성분시험 결과 P성분이 KS를 만족하지 못하였다. 용접부 평판 및 봉형 인장시험결과 SAW PH1에 비하여 PH2의 기계적 특성이 양호하게 나타났기 때문에 SAW의 경우 후열처리는 2시간을 권장한다.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Katayama, Seiji;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.133-139
    • /
    • 2014
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other ocean structures because of their high strength, corrosion-resistance and light weight properties. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective methode to reduce weight of the structures. Ti and Al have great differences in materials properties, and intermetallic compounds such as $Ti_3Al$, TiAl, $TiAl_3$ are easily formed at the contacting surface between Ti and Al. Thus, dissimilar welding and joining of Ti and Al are considered to be very difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50 m/min) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

CrMo강 용접계면균열의 크리프-피로 균열성장거동 (Creep-Fatigue Crack Growth at CrMo Steel Weld Interface)

  • 백운봉;윤기봉;이해무;서창민
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.3088-3095
    • /
    • 2000
  • Creep-fatigue crack growth behavior was experimentally measured particularly when a crack was located in the heat affected region of lCr-5Mo steel. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the $C_r$parameter. It was found that the crack growth rates were the highest when the crack path was located along the fine-grained heat affected zone(FGHAZ). Cracks located in other heat affected regions had a tendency to change the crack path eventually to FGHAZ. Creep-fatigue crack growth law of the studied case is suggested in terms of (da/dt)$_{avg}$ vs. ($C_t$)$_{avg}$ for residual life assessment.

Ductile cracking simulation procedure for welded joints under monotonic tension

  • Jia, Liang-Jiu;Ikai, Toyoki;Kang, Lan;Ge, Hanbin;Kato, Tomoya
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.51-69
    • /
    • 2016
  • A large number of welded steel moment-resisting framed (SMRF) structures failed due to brittle fracture induced by ductile fracture at beam-to-column connections during 1994 Northridge earthquake and 1995 Kobe (Hyogoken-Nanbu) earthquake. Extensive research efforts have been devoted to clarifying the mechanism of the observed failures and corresponding countermeasures to ensure more ductile design of welded SMRF structures, while limited research on the failure analysis of the ductile cracking was conducted due to lack of computational capacity and proper theoretical models. As the first step to solve this complicated problem, this paper aims to establish a straightforward procedure to simulate ductile cracking of welded joints under monotonic tension. There are two difficulties in achieving the aim of this study, including measurement of true stress-true strain data and ductile fracture parameters of different subzones in a welded joint, such as weld deposit, heat affected zone and the boundary between the two. Butt joints are employed in this study for their simple configuration. Both experimental and numerical studies on two types of butt joints are conducted. The validity of the proposed procedure is proved by comparison between the experimental and numerical results.

스테인리스 강관의 굽힘 특성 연구 (A Study on the Bendability of Stainless Steel Tubes)

  • 이건엽;이호진;이혜경;김윤규;문영훈
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.336-341
    • /
    • 2009
  • Hydroformed parts have higher dimensional accuracy, structural strength, and dimensional repeatability. Particularly in the automotive industry, manufacturing of parts with complex shapes from tubular materials sometimes requires one or more pre-forming operations such as bending before the hydroforming process. The pre-bending process is an important process for the successful hydroforming in the case where the perimeter of the blank is nearly the same as that of final product. The bendability of a tube depends on the parameters such as the bending radius, welding methods, mechanical properties and hardness. Through the stainless steel tubes bent by rotary draw bending machine, this study shows the following : (1) The influence on spring back ratio variation with stress level in the welded bent tube. (2) The Cross-section ovality variation with weld seam position and bending radius. (3) The relation between elongation and thickness reduction of tension zone with weld seam position and bending radius. (4) Workability evaluation of bent stainless steel tubes through the hardness of materials and hardness increment. The results of this study may help to understanding of characteristics on bendability of stainless steel tubes.

HSA800 강재의 FCAW 용접성, 용접자세 및 이음성능 연구 (A Study for the Weldability, Welding Position and Welded Joint Performance on the FCAW of HSA800 Steel)

  • 이은택;김종락;최영한;김상섭
    • 한국강구조학회 논문집
    • /
    • 제28권4호
    • /
    • pp.281-292
    • /
    • 2016
  • 본 연구에서는 HSA800 60mm 강재의 FCAW 용접성, 용접자세 및 이음성능을 확인하기 위해 용접자세 1G와 3G에 대한 FCAW 공시체를 제작하여 10종의 시험을 실시하였다. FCAW 1G 및 3G의 시험결과는 HSA800 강재의 KS 및 강도의 균질성에 대한 기준을 만족하며, 양호한 용접부로 나타났다. 그러나 용접부 평판 인장시험결과 FCAW 3G의 경우 용접기술 및 방법의 개선이 필요하다고 판단된다.

유공압 밸브 스풀용 강재의 관 대 봉 이종재 마찰용접의 최적화와 용접강도특성 및 AE평가 (Optimization of tube-to-bar dissimilar FRW of hydraulic valve spool steels and the weld strength properties and its AE evaluation)

  • 오세규;김현필;장홍근;오명석
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.24-35
    • /
    • 1997
  • The hydraulic or pneumatic valve spools become essential as the important components on the production of automatic hydraulic or pneumatic as mechanical industry has been rapidly developed. The machining precision is in necessity for manufacturing the valve spools. They could be unstable in the quality by the conventional are welding. And also they have a lot of technical problems in manufacturing because their shapes are generally small. By the precision casting process such as lost wax process, the production cost may be increased. But by the friction welding technique, they will be able to be manufactured without such problems. This paper deals with the development of dissimilar friction welding optimization for the hydraulic or pneumatic valve spool by friction welding and a new approach of on real-time qualify evaluation by AE techniques.

  • PDF

배관 용접부 표면결함 검출 및 비교 (Detection and Comparison of Surface Defects in Pipe Welds)

  • 정윤수;고가진;안태형;김재열
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.43-48
    • /
    • 2020
  • At present, 24 nuclear power plants are in operation nationwide as the main power source responsible for about 27% of Korea's electricity, and five nuclear power plants are currently under construction. Issues of nuclear safety and reliability have always existed, but after the Fukushima accident, ensuring reliability has become an even more important issue for safety. Compared to other kinds of accidents, the initial response after a nuclear accident is more important than any other accident. Prior to accidents, it is important to be able to predict and judge the accident in advance for the sake of prevention. In this research, non-destructive inspection methods for existing pipe welds include radiographic, ultrasonic, magnetic particle practice, and liquid penetration testing. For this experiment, carbon steel pipes like that of the material used in nuclear pipes were adopted, and specimen welded to the flange (Flange) were manufactured. After testing, the weld specimen were not damaged through the infrared thermography (IRT) experiment. This study attempted to improve the safety of carbon steel pipes through a comparative analysis of finite element analysis.

HT60급 TMCP강 용접부의 피로 거동 (Fatigue Behavior of Welded Joints in HT60 Grade TMCP Steel)

  • 용환선;김석태;조용식
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.133-133
    • /
    • 1996
  • Application of the relationship $da/dN=C({\Delta}K)^{m}$ is effective in the analysis of fatigue crack growth life. The values of material constant C and m have great influences on the predicted fatigue life and the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(${\Delta}K$) is effective in fatigue crack growth behavior. In this paper, fatigue crack growth behavior of the welded joints in HT60 grade TMCP(Thermo Machanical Control Process) steel have been studied. To evalute the fatigue crack growth rates of HT60 grade TMCP steel, fatigue test was performed by base metal(BM), heat affected zone(HAZ) and weld metal(WM) in TMCP steel at room temperature. We determined the relationship of $da/dN-{\Delta}K$ by correlation between C and m obtained from the Paris-Erdogan power law data supplied HT60 grade TMCP steel. The obtained results from this study indicate that fatigue crack growth rate of TMCP steel is not influenced by softening effect which occurs in the HAZ when high heat input weld is carried out. Softening effects, which affect fatigue properties. are shown that it is not affected to the fatigue growth rates significantly.

  • PDF