• Title/Summary/Keyword: Weir gate control

Search Result 11, Processing Time 0.029 seconds

Flexural and Interfacial Bond Properties of Hybrid Steel/Glass Fiber Reinforced Polymer Composites Panel Gate with Steel Gate Surface Deformation for Improved Movable Weir (개량형 가동보에 적용하기 위한 하이브리드 강판/GFRP 패널 게이트의 강판게이트 표면형상에 따른 휨 및 계면 부착 특성 평가)

  • Kim, Ki Won;Kwon, Hyung Joong;Kim, Phil Sik;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.57-66
    • /
    • 2015
  • The purpose of this study was to improved the durability of a improved movable weir by replacing the improved movable weir's metal gate with a hybrid steel/glass fiber reinforced polymer composites panel gate. Because the metal gate of a improved movable weir is always in contact with water, its service life is shortened by corrosion. This study made four type of hybrid steel/glass fiber reinforced polymer composites panel gate with different steel gate surface deformation (control, sand blast, scratch and hole), flexural. Fracture properties tests were performed depending on the steel gate surface deformation. According to the test results, the flexural behavior, flexural strength and fracture properties of hybrid steel/glass fiber reinforced polymer composites panel gate was affected by the steel panel gate surface deformation. Also, the sand blast type hybrid steel/glass fiber reinforced polymer composites panel gate shows vastly superior flexural and fracture performance compared to other types.

Analysis of influence on water quality and harmful algal blooms due to weir gate control in the Nakdong River, Geum River, and Yeongsan River (낙동강, 금강 및 영산강 가동보 운영이 수질 및 녹조현상에 미치는 영향 분석)

  • Seo, Dongil;Kim, Jaeyoung;Kim, Jinsoo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.877-887
    • /
    • 2020
  • A 3-Dimensional hydrodynamic and water quality model was applied to evaluate the effects of weir gate operations on water quality and harmful algal bloom (HAB) occurrences at selected locations in the Nakdong River, Geum River, and Yeongsan River. For the Geum River and Yeongsan River, when the gates are left open, annual and summer Chl-a and HABs were decreased at upstream locations, Sejong Weir and Seungchon Weir, but summer average concentrations of Chl-a and HABs were increased at downstream locations, Baekje Weir and Juksan Weir. For the open scenario, the reduced hydraulic residence time in the upper stream areas of the Geum River and Yeongsan River would allow less available time for nutrient consumption that would result in higher dissolved inorganic phosphorus concentrations followed by higher algal growth in the downstream areas. However, in the case of the Nakdong River, both annual and summer Chl-a and HABs were increased in all locations for the open scenario. This condition seems to be resulted in due to increased light availability by reduced water depths. Changes in Chl-a and HABs occurrences due to the water gate control in the study sites are different due to differences in physical, chemical, and biological conditions in each location.

Changes in the Riverbed Landforms Due to the Artificial Regulation of Water Level in the Yeongsan River (인위적인 보 수위조절로 인한 영산강 하도 지형 변화)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • A river bed which is submerged in water at high flow and becomes part of the river at low flow, serves as a bridge between the river and the land. The channel bar creates a unique ecosystem with vegetation adapted to the particular environment and the water pool forms a wetland that plays a very important role in the environment. To evaluate anthropogenic impacts on the river bed in the Middle Yeongsangang River, the fluvial landforms in the stream channel were analyzed using multi-temporal remotely-sensed images. In the aerial photograph of 2005 taken before the construction of the large weirs, oxbow lakes, mid-channel bars, point bars, and natural wetlands between the artificial levees were identified. Multiple bars divided the flow of stream water to cause the braided pattern in a particular section. After the construction of the Seungchon weir, aerial photographs of 2013 and 2015 revealed that most of the fluvial landforms disappeared due to the dredging of its riverbed and water level control(maintenance at 7.5El.m). Sentinel-2 images were analyzed to identify differences between before and after the opening of weir gate. Change detection was performed with the near infrared and shortwave infrared spectral bands to effectively distinguish water surfaces from land. As a result, water surface area of the main stream of the Yeongsangang River decreased by 40% from 1.144km2 to 0.692km2. A large mid-channel bar that has been deposited upstream of the weir was exposed during low water levels, which shows the obvious influence of weir on the river bed. Newly formed unvegetated point bars that were deposited on the inside of a meander bend were identified from the remotely sensed images. As the maintenance period of the weir gate opening was extended, various habitats were created by creating pools and riffles around the channel bars. Considering the ecological and hydrological functions of the river bed, it is expected that the increase in bar areas through weir gate opening will reduce the artificial interference effect of the weir.

Operation analysis and application of modified slope-area method for the estimation of discharge in multi-function weir (다기능보의 방류량 산정 개선을 위한 운영 분석 및 수정 경사-면적법의 적용)

  • Oh, Ji-Hwan;Jang, Suk-Hwan;Oh, Kyoung-Doo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.687-701
    • /
    • 2018
  • A multi-function weir is representative control structure in the stream flow. Estimation of accurate flood discharge according to gate operations and prediction of floodwave travel times at the downstream are very important in terms of water use and river management. This study analyzed the limitation and improvement through the current gate operation data on the Young-san river. in addition, flood discharge was calculated considering lower and upper water level condition and gate operating using the modified slope-area method in the Seoung-chon weir. As a result, the current state was required improvement because exceed the theoretical range and rapidly fluctuation of discharge coefficient, can not be considered difference between the upper and lower water level and the estimation by the regression equation. As a result of applying the proposed method in this study, the above mentioned limitations can be compensated, compared with the current discharge data. Also it was analyzed as more physically valid because using the evaluated hydraulic equation and estimate the slope and friction loss of natural stream by iteration and to reduce the error. In conclusion, the process carried out serves as a representative flow control point of the water system through reliable discharge estimation, it is expected that it will be possible to properly river management.

Experimental Study on the Inflow and Outflow Structures of Hwasun Flood Control Reservoir (화순 홍수조절지의 유입유출 구조물에 대한 수리모형실험 연구)

  • Lee, Sang-Hwa;Jin, Kwang-Ho;Ryu, Jong-Hyun;Kim, Soo-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.675-684
    • /
    • 2012
  • Recently, a heavy rainfall under climate change causes the flood exceeded river's conveyance. Flood control methods under the limited river width are the increase of embankment, the construction of storage pockets and diversion channel, the dredging of river bed. Hwasun flood control reservoir of washland is designed as the storage pockets and the regulating gate for the control of water level. In this study, the propriety of design was investigated through hydraulic experiments for the circumstances to exclude the constant flood discharge during operation period. In the results, the over flow rate of side weir exceeded the flow of design and indicated to be able to discharge the designed flow in the regulating gate opened 1.1 m. The high velocity 7.1 m/s behind the gate has investigated to reduce under 3.3 m/s by the baffle block.

Changes in Landscape Characteristics of Stream Habitats with the Construction and Operation of River-Crossing Structures in the Geum-gang River, South Korea (금강에서 횡단구조물의 설치와 운영에 따른 하천 서식처의 경관 특성 변화)

  • Kim, Dana;Lee, Cheolho;Kim, Hwirae;Ock, Giyoung;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.64-78
    • /
    • 2021
  • This study was conducted to find out the effect of the construction and operation of river-crossing structures on the habitat landscape characteristics in the Geum-gang River, South Korea. A total of three study reaches were selected in the downstream of the Daecheong Dam: the Buyong-ri reach, which is a control that is not affected by the construction and operation of the weir of the Four Rivers Project and Sejong-bo Weir reach and Gongju-bo Weir reach of the upper and lower sections of each weir that are affected by the weir construction and operation. The habitat type was classified, and then the structural characteristics of the landscape were analyzed using aerial photographs taken before and after the construction of the Daecheong Dam, before and after the construction of the weir, and before and after the weir gate operation. After the construction of Daecheong Dam in Geum River, the area of the bare land greatly decreased, and the area of grassland and woodland increased in the downstream of the dam. In addition, the patch number in the river landscape increased, the patch size decreased, and the landscape shape index and the habitat diversity increased. Therefore, after the construction of the dam, the bare land habitat was changed to a vegetated habitat, and the habitat was fragmented and diversified in the downstream of the dam. After the construction of the weirs, the area of open water increased by 18% in the Sejong-bo reach and by 90% in the Gongju-bo reach, and the landscape shape index of the open water decreased by 32% in the Sejong-bo reach and by 35% in the Gongju-bo reach, and the habitat diversity index decreased to 25% in the Sejong-bo reach and to 24% in the Gongju-bo reach. Therefore, the open water habitat was expanded, the shape of the habitat was simplified, and the habitat diversity decreased according to the construction of the weirs. After water-gate opening of the weir, the bare land that disappeared after the construction of the weir reappeared, and the landscape shape index and habitat diversity index increased in both terrestrial and open water habitats. Therefore, it was found that the landscape characteristics of the river habitats were restored to the pre-construction of the weir by the operation of the weir gate. The effect of weir gate opening was delayed in the downstream than in the upstream of the weir. Although the characteristics of the landscape structure in the river habitat changed due to the construction of the river-crossing structures, it is thought that proper technology development for the ecological operation of the structures is necessary as the habitat environments can be restored by the operation of these structures.

Spatial Distribution and Successional Changes of Riparian Vegetation on Sandbars Exposed after Watergate-Opening of Weirs in the Geumgang River, South Korea (보 개방 후 노출된 금강 모래톱에서 하천 식생의 공간 분포와 천이)

  • Lee, Cheolho;Kim, Hwirae;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.194-205
    • /
    • 2022
  • Sandbars formed by sediment transportation and sedimentation are some of the most important habitats for specific wildlife and they provide an aesthetic landscape in streams. The purpose of this study was to understand the successional process of the colonization and development of early vegetation over time on sandbars exposed by the opening of a gate at a downstream weir. We selected the following four study sites in the Geumgang River, South Korea: three weir-upstream sites with different gate-opening times and a control site that was not affected by weir operation. Changes in the structural characteristics and spatial distribution of the riparian vegetation on the sandbars exposed after opening the gate at the weir were surveyed according to the different exposure periods of the sandbars at the study sites. The newly formed sandbars accounted for more than 33% of the area of the existing floodplain in the three weir-upstream sites of the Geumgang River after opening the gate at the weir. Nine main plant communities were distributed on the exposed sandbars. These communities were classified as annual mesophytic, perennial hydrophytic, perennial hygrophytic, subtree, and tree vegetation based on their species traits. As the duration of exposure of the sandbar increased, the area of the bare sandbar and the annual herbaceous and perennial hydrophytic communities decreased, and the areas occupied by perennial hygrophytic, subtree, and tree communities increased. Changes in vegetation on the sandbar were classified into three types of succession according to the condition of the aquatic habitat before the gate-opening and the degree of physical disturbance caused by the water flow after the gate-opening. The types of succession were: 1) succession starting from hydrophytes in the lentic aquatic zone, 2) succession starting from annual herbaceous hygrophytes in the lotic aquatic zone, and 3) willow-dominated succession in the disturbed channel side. Our results suggested that the dynamics of successional changes in vegetation should be considered during weir operation to ecologically manage the habitats and landscape of the fluvial landforms, including sandbars in streams.

Analysis of Discharge Characteristics for a Control Gate in a River (하도내 조절수문 방류특성 해석)

  • Son, Kwang Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.309-314
    • /
    • 2011
  • Analysis of discharge characteristics through control gates at river crossing structures is important for an effective water level control and water resources management. In recent years, many river control structures in four major rivers are under construction but only few researches on discharge characteristics at control gates could be found in Korea. The discharge characteristics depend on both shape of control gates and the effects of downstream water-depth. In this research, classification index for discharge patterns (free weir, submerged weir, free orifice, submerged orifice) through a control gate were reviewed with $h_g/h_1$, $h_3/h_g$, and $h_3/h_1$. Classification criteria of discharge patterns were also suggested. Representative discharge estimation equations for each discharge patterns were adopted and discharge coefficients were developed from a hydraulic model for a specific control gate which will be constructed in Nakdong river. Reliability of the derived discharge equation and coefficients were confirmed by comparisons between the real discharge in a model and the predicted discharge from the results of this research.

Study on Flood Control Effect with Movable Weir (가동보 설치에 따른 홍수조절효과 분석)

  • Park, Jong-Pyo;Kim, Tae-Won;Hwang, Tae-Ha;Park, Gu-Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1259-1263
    • /
    • 2008
  • 인천청라 경제자유구역내의 중앙호수공원을 대상으로 100년빈도 홍수시 Off-Line저류지로써 횡월류부에 가동보 설치에 따른 공촌천 홍수조절효과를 분석하였다. 서해조위 및 배수갑문 운영 등의 다양한 변수를 고려해야 하는 본 하천의 특성상 흐름상태의 시 공간적 변화를 고려하고 Off-Line 저류지 해석에 있어 실제 지형을 충분히 반영할수 있는 HEC-RAS 부정류 해석을 수행하였다. 부정류 모의 시 가동보의 도복을 합리적으로 검토 하기 위해 도복발생 시간을 기준으로 2단계에 걸쳐 부정류 모의를 수행하였다. 즉, 1단계에서 호수공원 횡월류 Weir높이를 가동보 높이로 고정하고 부정류 모의를 수행하여 공촌천의 호수공원 횡월류부 지점의 수위가 가동보 높이와 같아지는 시간을 찾고, 2단계에서 그 시간을 기준으로 호수공원 횡월류 Weir높이를 가동보가 없을 때의 높이로 부정류 모의를 수행하여 공촌천의 내수위를 검토하였으며, 가동보가 설치되지 않았을 때의 결과와 비교하여 가동보 설치에 따른 홍수조절효과를 분석하였다. 본 연구방법에서 검토된 공촌천 내수위의 적정성을 검토하기 위하여 배수갑문 운영에 따른 수위 변화를 모의 할 수 있는 Gate 모형으로 공촌천 하류의 배수갑문 지점에 대한 내수위를 산정하였으며, 하천 상류구간의 배수영향을 HEC-RAS를 이용한 부등류 모의를 추가적으로 수행하여 본 연구방법의 결과와 비교 검토하였다. 공촌천의 내수위 비교를 통한 홍수조절효과 분석결과 $2{\sim}3cm$ 정도의 홍수조절 효과가 있는 것으로 분석되었으며, 본 연구에서 제안한 방법이 가동보 설치에 따른 홍수조절효과분석 시 적용이 가능하리라 판단된다.

  • PDF

A Study on the Change of Current in the Vicinity of Mokpo Harbor and Its Impact on Ship Operation due to the Discharge through Yongsan River Estuary Weir and Yongam-Kumho Sea Dike (영산강 하구둑 및 영암-금호방조제의 방류에 의한 목포항 주변수역의 유동변화 및 선박운용에 미치는 영향에 관한 연구)

  • 정대득;이중우;국승기
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.133-146
    • /
    • 1999
  • Mokpo coastal area is connected to the adjacent a long river and two large basins. It is essential for port planning coastal zone management and environmental impact study to analyze the data related to the ship operation and variation of current and water quality due to the development of water area including dredging reclamation and estuary barrage. The Yongsan river estuary weir and Yongam-Kumho basins discharge much of water through water gates for the purpose of flood control and prohibit salt intrusion at the inland fresh water area. To meet this purpose discharge through the gates have been done at the period of maximum water level difference between inner river and sea level. This discharged water may cause the changes of current pattern and other environmental influences in the vicinity and inner area of semi-closed Mokpo harbor. In this study ADI method is applied to the governing equation for the analysis of the changes on current pattern due to discharged water. As the results of this study it is known that the discharging operation causes many changes including the increase of current velocity at the front water area at piers approaching passage and anchorages. Discussion made on the point of problems such as restricted maneuverability and the safety of morred vessels at pier and anchorage. To minimize this influence the linked gate operation discharging warning system and laternative mooring system are recommended.

  • PDF