References
- Cho, H., Oh, K.S., and Yang, J.H. 2011. Geomorphological significance and role of the sand bars of major river valleys in the South Korea -case study on the Nakdong river valleys-. Journal of the Korean Geomorphological Association 18: 1-14.
- CNI. 2017. Report of water environment monitoring after Geum river restoration project. ChungNam Institute, Gongju, Republic of Korea. (in Korean)
- Collinge, S. 1996. Ecological consequences of habitat fragmentation: implications for landscape architecture and planning. Landscape and Urban Planning 36: 59-77. https://doi.org/10.1016/S0169-2046(96)00341-6
- Dosskey, M.G., Vidon, P., Gurwick, N.P., Allan, C.J., Duval, T.P., and Lowrance, R. 2010. The role of riparian vegetation in protecting and improving chemical water quality in streams. Journal of the American Water Resources Association 46: 261-277. https://doi.org/10.1111/j.1752-1688.2010.00419.x
- Fahrig, L., Arroyo-Rodriguez, V., Bennett, J.R., Boucher-Lalonde, V., Cazetta, E., Currie, D.J., Eigenbrod, F., Ford, A.T., Harrison, S.P., Jaeger, J.A.G., Koper, N., Martin, A.E., Martin, J.-L., Metzger, J.P., Morrisona, P., Rhodesn, J.R., Saunderso, D.A., Simberloff, D., Smith, A.C., Tischendorf, L., Vellend, M., and Watling, J.I. 2019. Is habitat fragmentation bad for biodiversity? Biological Conservation 230: 179-186. https://doi.org/10.1016/j.biocon.2018.12.026
- Fernald, A.G., Landers, D.H., and Wigington Jr, P.J. 2006. Water quality changes in hyporheic flow paths between a large gravel bed river and off-channel alcoves in Oregon, USA. River Research and Applications 22: 1111-1124. https://doi.org/10.1002/rra.961
- Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers, R.M., Foster, B.L., Jenkins, C.N., King, A.J., Laurance, W.F., Levey, D.J., Margules, C.R., Melbourne, B.A., Nicholls, A.O., Orrock, J.L., Song D.-X., and Townshend, J.R. 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances 1: e1500052. https://doi.org/10.1126/sciadv.1500052
- Im, R.Y., Kim, J.Y., Choi, J.Y., Do, Y., and Joo, G.J. 2015. Changes of river morphology in the mid-lower part of Nakdong River basin after the 4 Large River Project, South Korea. Korean Journal of Ecology and Environment 48: 188-194. (in Korean) https://doi.org/10.11614/KSL.2015.48.3.188
- Im, R.Y., Kim, J.Y., Nishihiro, J., and Joo, G.J. 2020. Large weir construction causes the loss of seasonal habitat in riparian wetlands: a case study of the Four Large River Projects in South Korea. Ecological Engineering 152: 105839. https://doi.org/10.1016/j.ecoleng.2020.105839
- Jang, C.R. and Shimizu, Y. 2010. Numerical simulation of sand bars downstream of Andong Dam. Journal of The Korean Society of Civil Engineers 30: 379-388. (in Korean)
- Jansson, R., Nilsson, C., and Renofalt, B. 2000. Fragmentation of riparian floras in rivers with multiple dams. Ecology 81: 899-903. https://doi.org/10.1890/0012-9658(2000)081[0899:FORFIR]2.0.CO;2
- Jeon, D.J., Kim, J.Y., Kim, T.H., and Eun, J. 2013. A study on environment monitoring of 4 major rivers project. Korea Environment Institute, Seoul, Republic of Korea. (in Korean)
- Jeong, A.C., Kim, S.W., Yu, W.S., Kim, Y.K., and Jung, K.S. 2018. Estimation of river dredging location and volume considering flood risk variation due to riverbed change. Journal of the Korean Society of Hazard Mitigation 18: 279-291. (in Korean)
- Jin, S.N. and Cho, K.H. 2016. Expansion of riparian vegetation due to change of flood regime in the Cheongmi-cheon Stream, Korea. Ecology and Resilient Infrastructure 3: 322-326. (in Korean) https://doi.org/10.17820/eri.2016.3.4.322
- Kim, J.A., Lee, S.W., Hwang, G.S., and Kim, C.G. 2012. Relationship between fish assemblages community and streamline complexity. Journal of the Korea Society of Environmental Restoration Technology 15: 19-29. (in Korean)
- Kim, Y.J., Lee, S.J., and An, K.G. 2019. Characteristics of chemical water quality and the empirical model analysis before and after the construction of Baekje Weir. Korean Journal of Environmental Biology 37: 48-59. (in Korean) https://doi.org/10.11626/KJEB.2019.37.1.048
- Kwak, J.W., Jin, H.S., and Kim, H.S. 2017. An assessment of flow characteristic and riverbed change by construction of hydraulic structure. Journal of Wetlands Research 19: 542-550. (in Korean) https://doi.org/10.17663/JWR.2017.19.4.542
- Lee, H.J., Park, H.K., and Cheon, S.U. 2018. Effects of weir construction on phytoplankton assemblages and water quality in a large river system. International Journal of Environmental Research and Public Health 15: 2348. https://doi.org/10.3390/ijerph15112348
- McGarigal, K., Cushman, S.A., and Ene, E. 2012. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 3 January 2021.
- MLIT. 1997. Korea annual hydrological report. Ministry of Land, Transport and Maritime Affairs, Gwacheon, Republic of Korea. (in Korean)
- MLTMA. 2011. Basic plan for the Guem river development and management. Ministry of Land, Transport and Maritime Affairs, Gwacheon, Republic of Korea. (in Korean)
- MOCT. 2006. Geumgang river basin investigation report 3: Hydrologic investigation report. Ministry of Land, Construction and Transportation, Gwacheon, Republic of Korea. (in Korean)
- MOE. 2020. Comprehensive report on monitoring of weir gate control of the four major rivers. Ministry of Environment. Sejong, Republic of Korea. (in Korean)
- MOE. 2021. Water environment information system. Ministry of Environment, Sejong, Republic of Korea. http://water.nier.go.kr/. Accessed 31 January 2021. (in Korean)
- Naiman, R.J., Decamps, H., and Pollock, M. 1993. The role of riparian corridors in maintaining regional biodiversity. Ecological Applications 3: 209-212. https://doi.org/10.2307/1941822
- NGII. 2020. National spatial data infrastructure platform. National Geographic Information Institute, Suwon, Republic of Korea. http://map.ngii.go.kr/mn/mainPage.do. Accessed 11 November 2020.
- Ock, G.Y., Choi, M.Y., Kim, J.C., Park, H.G., and Han, J.H. 2020. Evaluation of habitat diversity changes by weir operation of the Sejongbo weir in Geum river using high-resolution aerial photographs. Ecology and Resilient Infrastructure 7: 366-373. (in Korean)
- ODM (OpenDroneMap). 2020. A Command Line Toolkit to Generate Maps, Point Clouds, 3D Models and DEMs from Drone, Balloon or Kite Images. https://github.com/OpenDroneMap/ODM. Accessed 11 November 2020
- Pinay, G. and Decamps, H. 1988. The role of riparian woods in regulating nitrogen fluxes between the alluvial aquifer and surface water: a conceptual model. Regulated Rivers: Research & Management 2: 507-516. https://doi.org/10.1002/rrr.3450020404
- Turner, M.G. 1989. Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics 20: 171-197. https://doi.org/10.1146/annurev.es.20.110189.001131
- Woo, H.S., Park, M.H., Cho, K.H., Cho, H.J., and Chung, S.J. 2010. Recruitment and succession of riparian vegetation in alluvial river regulated by upstream dams-focused on the Nakdong River downstream Andong and Imha Dams. Journal of Korea Water Resources Association 43: 455-469. (in Korean) https://doi.org/10.3741/JKWRA.2010.43.5.455