• Title/Summary/Keyword: Weightless Neural Network

Search Result 5, Processing Time 0.019 seconds

A Study on Handwritten Digit Categorization of RAM-based Neural Network (RAM 기반 신경망을 이용한 필기체 숫자 분류 연구)

  • Park, Sang-Moo;Kang, Man-Mo;Eom, Seong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • A RAM-based neural network is a weightless neural network based on binary neural network(BNN) which is efficient neural network with a one-shot learning. RAM-based neural network has multiful information bits and store counts of training in BNN. Supervised learning based on the RAM-based neural network has the excellent performance in pattern recognition but in pattern categorization with unsupervised learning as unsuitable. In this paper, we propose a unsupervised learning algorithm in the RAM-based neural network to perform pattern categorization. By the proposed unsupervised learning algorithm, RAM-based neural network create categories depending on the input pattern by itself. Therefore, RAM-based neural network for supervised learning and unsupervised learning should proof of all possible complex models. The training data for experiments provided by the MNIST offline handwritten digits which is consist of 0 to 9 multi-pattern.

Experience Sensitive Cumulative Neural Network Using RAM (RAM을 이용한 경험유관축적 신경망 모델)

  • 김성진;권영철;이수동
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.95-102
    • /
    • 2004
  • In this paper, Experience Sensitive Cumulative Neural Network (ESCNN) is introduced, which can cumulate the same or similar experiences. As the same or similar training patterns are cumulated in the network, the system recognizes more important information in the training patterns. The functions of forgetting less important information and attending more important information resided in the training patterns are surveyed and implemented by simulations. The system behaves well under the noisy circumstances due to its forgetting and/or attending properties, even in 50 percents noisy environments. This paper also describes the creation of the generalized patterns for the input training patterns.

A Dynamic Three Dimensional Neuro System with Multi-Discriminator (다중 판별자를 가지는 동적 삼차원 뉴로 시스템)

  • Kim, Seong-Jin;Lee, Dong-Hyung;Lee, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.585-594
    • /
    • 2007
  • The back propagation algorithm took a long time to learn the input patterns and was difficult to train the additional or repeated learning patterns. So Aleksander proposed the binary neural network which could overcome the disadvantages of BP Network. But it had the limitation of repeated learning and was impossible to extract a generalized pattern. In this paper, we proposed a dynamic 3 dimensional Neuro System which was consisted of a learning network which was based on weightless neural network and a feedback module which could accumulate the characteristic. The proposed system was enable to train additional and repeated patterns. Also it could be produced a generalized pattern by putting a proper threshold into each learning-net's discriminator which was resulted from learning procedures. And then we reused the generalized pattern to elevate the recognition rate. In the last processing step to decide right category, we used maximum response detector. We experimented using the MNIST database of NIST and got 99.3% of right recognition rate for training data.

A Study on Unsupervised Learning Method of RAM-based Neural Net (RAM 기반 신경망의 비지도 학습에 관한 연구)

  • Park, Sang-Moo;Kim, Seong-Jin;Lee, Dong-Hyung;Lee, Soo-Dong;Ock, Cheol-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • A RAM-based Neural Net is a weightless neural network based on binary neural network. 3-D neural network using this paper is binary neural network with multiful information bits and store counts of training. Recognition method by MRD technique is based on the supervised learning. Therefore neural network by itself can not distinguish between the categories and well-separated categories of training data can achieve only through the performance. In this paper, unsupervised learning algorithm is proposed which is trained existing 3-D neural network without distinction of data, to distinguish between categories depending on the only input training patterns. The training data for proposed unsupervised learning provided by the NIST handwritten digits of MNIST which is consist of 0 to 9 multi-pattern, a randomly materials are used as training patterns. Through experiments, neural network is to determine the number of discriminator which each have an idea of the handwritten digits that can be interpreted.

Sign Language recognition Using Sequential Ram-based Cumulative Neural Networks (순차 램 기반 누적 신경망을 이용한 수화 인식)

  • Lee, Dong-Hyung;Kang, Man-Mo;Kim, Young-Kee;Lee, Soo-Dong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.205-211
    • /
    • 2009
  • The Weightless Neural Network(WNN) has the advantage of the processing speed, less computability than weighted neural network which readjusts the weight. Especially, The behavior information such as sequential gesture has many serial correlation. So, It is required the high computability and processing time to recognize. To solve these problem, Many algorithms used that added preprocessing and hardware interface device to reduce the computability and speed. In this paper, we proposed the Ram based Sequential Cumulative Neural Network(SCNN) model which is sign language recognition system without preprocessing and hardware interface. We experimented with using compound words in continuous korean sign language which was input binary image with edge detection from camera. The recognition system of sign language without preprocessing got 93% recognition rate.

  • PDF