Abstract
In this paper, Experience Sensitive Cumulative Neural Network (ESCNN) is introduced, which can cumulate the same or similar experiences. As the same or similar training patterns are cumulated in the network, the system recognizes more important information in the training patterns. The functions of forgetting less important information and attending more important information resided in the training patterns are surveyed and implemented by simulations. The system behaves well under the noisy circumstances due to its forgetting and/or attending properties, even in 50 percents noisy environments. This paper also describes the creation of the generalized patterns for the input training patterns.
제안된 경험 유관 축적 신경회로망은 입력 패턴의 교육 회수를 누적시킬 수 있는 구조를 가지고 있어, 누적된 교육을 통한 공통된 경험에 대해서는 강한 반응을 보이는 주의 집중 기능을 가진다. 그리고 잡음이 많은 패턴에 대하여 선행처리 과정을 거치지 않고 바로 교육을 시켜도 상대적으로 유용한 정보를 누적시켜 일반화 패턴을 추출할 수 있다 본 논문에서는 추가 교육 뿐만 아니라 반복 교육도 가능한 경험 유관 축적 신경회로망 모델을 제안하고, 이 신경회로망이 가지는 기본 특성인 망각 및 주의 집중기능에 대하여 기술하였으며, 또한 교육된 정보로부터 일반화 패턴의 추출 과정과 일반화 패턴의 생성 및 반복교육에 관한 것을 기술하였다.