• 제목/요약/키워드: Weighted association rule discovery

검색결과 2건 처리시간 0.015초

상이한 특성을 갖는 아이템 그룹에 대한 가중 연관 규칙 탐사 (Weighted Association Rule Discovery for Item Groups with Different Properties)

  • 김정자;정희택
    • 한국정보통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.1284-1290
    • /
    • 2004
  • 장바구니 분석에서, 가중 연관 규칙 탐사는 특정 상품에 대한 아이템의 중요도를 반영함으로써 더 많은 이익을 주는 정보를 규칙으로 탐사하였다. 그러나 트랜잭션을 구성하는 아이템들이 한 개 이상의 서로 다른 그룹으로 나누어진다면, 각 그룹의 특성을 반영하는 서로 다른 측정 방법으로 평가되어야 하므로 기존의 가중연관규칙 탐사 방법을 적용할 수가 없다. 본 논문에서는 이를 해결하기 위해서 가중 연관 규칙의 새로운 탐사 방법을 제안하였다. 먼저 각 아이템들은 유사한 특성에 따라 서브 그룹으로 나누고, 아이템 중요도(아이템 가중치)는 서브 그룹에 포함된 아이템들 단위로 계산한다 이때 적용되는 여러 가중 인자들은 아이템의 특성을 반영하는 아이템 그룹별로 재 정의하였다. 제안하는 방법은 네트워크 보안 데이터에 적용하여 위험을 일으키는 요소에 대한 위험 규칙 집합을 생성함으로써 네트워크 위험관리의 정성평가와, 규칙 생성 시 적용된 가중치와 같은 여러 통계인자들에 의해서 위험도를 계산함으로써 정량평가를 가능하게 하였다. 또한 데이터 아이템들이 상이하게 구별될 수 있는 특성을 만족하는 마켓 데이터의 새로운 응용분야에 넓게 적용될 수 있다.

가중연관규칙 탐사를 이용한 재활훈련운동과 근육 활성의 연관성 분석 (Analysis on Relation between Rehabilitation Training Movement and Muscle Activation using Weighted Association Rule Discovery)

  • 이아름;박용군;권대규;김정자
    • 전자공학회논문지CI
    • /
    • 제46권6호
    • /
    • pp.7-17
    • /
    • 2009
  • 효과적인 재활 시스템을 구상하는데 있어서 훈련 데이터의 정교한 분석은 다음 단계 훈련을 위한 피드백 자료로서 매우 중요하다. 현재 다양한 생체 역학적 실험을 통해 인간의 운동 능력을 평가하고 이로부터 생성된 데이터의 분석을 위한 객관적이고 신뢰성 있는 연구결과들이 발표되고 있다. 그러나 대부분의 기존 연구들은 기초 통계적인 방법에 근거한 정량분석만을 수행함으로써, 획득된 정보를 임상에 적용 하는데 있어서는 충분한 신뢰성을 보장할 수 없다. 데이터마이닝은 대용량 데이터에 들어있는 숨겨진 규칙과 패턴을 탐사함으로써 임상 데이터에 숨어있는 의미 있는 정보추출에 성공적으로 사용되고 있으며, 특히 임상 연구 분야에서는 훌륭한 의사 결정 지원 시스템으로서 점점 그 사용이 증가되고 있다. 본 연구에서는 신뢰성 있는 자세 제어 능력(Postural control ability) 평가를 위해서 측정된 훈련 데이터에 가중연관규칙 탐사를 적용하여 자세 훈련 유형에 따른 근육 활성 패턴과의 연관성을 분석, 효율적인 재활 훈련 규칙을 탐사하였다. 탐사된 규칙은 재활 및 임상 전문가의 의사결정에 더욱 정성적이고 유용한 선험적 지식으로 사용 될 수 있으며, 이를 근거로 환자 맞춤형 최적의 재활 훈련 모델을 구상하기 위한 지표로서 사용될 수 있다.