• Title/Summary/Keyword: Weight distributions

Search Result 317, Processing Time 0.03 seconds

Synthesis and Characterization of Star-shaped Aliphatic Polyester

  • Shin, Young-Cheol;Park, Kil-Yeong;Jin, Moon-Young;Hong, Sung-Kwon;Donghyun Cho;Taihyun Chang;Moonhor Ree
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.100-106
    • /
    • 2001
  • Several star-polymers with aliphatic cores were synthesized by ring opening polymerization (ROP) of $\xi$-caprolactone using stannous 2-ethyl-hexanoate as a catalyst. The star-polymers were thoroughly analyzed by MALDI-TOF mass spectrometry, temperature gradient interaction chromatography and $\^$13/C-NMR to obtain detailed information of the molecular structure. The imperfection of the star-polymers seemed to be originated from restricted participation of sterically hindered hydroxyl groups of initiator. The synthesized star-polymers had narrow molecular weight distributions. Various reaction conditions to control the imperfection were studied.

  • PDF

Iron Catalyzed Atom Transfer Radical Polymerization of Methyl Methacrylate Using Diphenyl-2-pyridylphosphine as a Ligand

  • Xue, Zhigang;Noh, Seok-Kyun;Lyoo, Won-Seok
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.302-307
    • /
    • 2007
  • The living radical polymerization of methyl methacrylate (MMA) by atom transfer radical polymerization, (ATRP) employing a $Fe(II)X_2/diphenyl-2-pyridyl$ phosphine (PyP) catalytic system (X=Cl, Br), was investigated using several initiators and solvents at various temperatures. Most of the polymerizations with the PyP ligand were well controlled, with a linear increase in the number average molecular weights ($M_n$) vs. conversion, with relatively low molecular weight distributions ($M_w/M_n=1.2-1.4$) throughout the reactions. The measured weights matched those of the predicted values. The ethyl-2-bromoisobutyrate (EBriB) initiated ATRP of MMA, with the $Fe(II)X_2/diphenyl-2-pyridyl$ phosphine catalytic system (X=Cl, Br), was better controlled in p-xylene at $80^{\circ}C$ than the other solvents used in this study.

On the New Age Replacement Policy (새로운 연령교체 방식의 개발)

  • Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.280-286
    • /
    • 2016
  • Purpose: Recently, Jiang defines the tradeoff B life to minimize a sum of life lost by preventive maintenance (PM) and corrective maintenance (CM) contribution parts and sets up an optimal replacement age of age replacement policy as this tradeoff life. In this paper, Jiang's model only considering the known lifetime distribution is extended by assigning different weights to two parts of PM and CM in order to reflect the practical maintenance situations in application. Methods: The new age replacement model is formulated and the meaning of a weight factor is expressed with the implied cost of failure under asymptotic expected cost model and also discussed with one-cycle expected cost criterion. Results: The proposed model is applied to Weibull and lognormal lifetime distributions and optimum PM replacement ages are derived with corresponding implied cost of failure. Conclusion: The new age replacement policy to escape the estimation of cost of failure in classical asymptotic expected cost criterion based on the renewal process is provided.

A Statistical Perspective of Neural Networks for Imbalanced Data Problems

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.7 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • It has been an interesting challenge to find a good classifier for imbalanced data, since it is pervasive but a difficult problem to solve. However, classifiers developed with the assumption of well-balanced class distributions show poor classification performance for the imbalanced data. Among many approaches to the imbalanced data problems, the algorithmic level approach is attractive because it can be applied to the other approaches such as data level or ensemble approaches. Especially, the error back-propagation algorithm using the target node method, which can change the amount of weight-updating with regards to the target node of each class, attains good performances in the imbalanced data problems. In this paper, we analyze the relationship between two optimal outputs of neural network classifier trained with the target node method. Also, the optimal relationship is compared with those of the other error function methods such as mean-squared error and the n-th order extension of cross-entropy error. The analyses are verified through simulations on a thyroid data set.

Design and Manufacturing of a 3D Pattern Mill (고속 3차원 패턴가공기의 설계 및 제작에 관한 연구)

  • 김의중;최진경;한성종;주상율;최성원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.220-223
    • /
    • 2000
  • In this study for the development of a 3D pattern mill, we designed its layout which has high stiffness and low-weight structure. We calculated the load of each axis component when 3D pattern mill is under the worst cutting conditions. On base of the calculations, we determined the size of its structure and selected main components of the machine. Also, using FEM we analyzed the layout design of 3D pattern mill to reduce the wcight of structure and increase stiffness of it. According to the load position and direction, shapes and values of the deformation and the stress distributions are calculated, also we calculated the natural frequencies and mode shapes in order ta modify and redesign the weak parts

  • PDF

Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams

  • Al-Maliki, Ammar F.H.;Ahmed, Ridha A.;Moustafa, Nader M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.177-193
    • /
    • 2020
  • In the present research, dynamic analysis of functionally graded (FG) graphene-reinforced beams under thermal loading has been carried out based on finite element approach. The presented formulation is based on a higher order refined beam element accounting for shear deformations. The graphene-reinforced beam is exposed to transverse periodic mechanical loading. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. Convergences and validation studies of derived results from finite element approach are also presented. This research shows that the resonance behavior of a nanocomposite beam can be controlled by the GPL content and dispersions. Therefore, it is showed that the dynamical deflections are notably influenced by GPL weight fractions, types of GPL distributions, temperature changes, elastic foundation and harmonic load excitation frequency.

Wave propagation of FG polymer composite nanoplates reinforced with GNPs

  • She, Gui-Lin
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.27-35
    • /
    • 2020
  • This study examines the wave propagation of the functionally graded polymer composite (FG-PC) nanoplates reinforced with graphene nanoplatelets (GNPs) resting on elastic foundations in the framework of the nonlocal strain gradient theory incorporating both stiffness hardening and softening mechanisms of nanostructures. To this end, the material properties are based on the Halpin-Tsai model, and the expressions for the classical and higher-order stresses and strains are consistently derived employing the second-order shear deformation theory. The equations of motion are then consistently derived using Hamilton's principle of variation. These governing equations are solved with the help of Trial function method. Extensive numerical discussions are conducted for wave propagation of the nanoplates and the influences of different parameters, such as the nonlocal parameter, strain gradient parameter, weight fraction of GNPs, uniform and non-uniform distributions of GNPs, elastic foundation parameters as well as wave number.

Blind Signal Processing for Wireless Sensor Networks

  • Kim, Namyong;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.158-164
    • /
    • 2014
  • In indoor sensor networks equalization algorithms based on the minimization of Euclidean distance (MED) for the distributions of constant modulus error (CME) have yielded superior performance in compensating for signal distortions induced from optical fiber links, wireless-links and for impulsive noise problems. One main drawback of MED-CME algorithms is a heavy computational burden hindering its implementation. In this paper, a recursive gradient estimation for weight updates of the MED-CME algorithm is proposed for reducing the operations $O(N^2)$ of the conventional MED-CME to O(N) at each iteration time for N data-block size. From the simulation results of the proposed recursive method producing exactly the same results as the conventional method, the proposed estimation method can be considered to be a reliable candidate for implementation of efficient receivers in indoor sensor networks.

Revelation of the Susceptibility of Microcapsule by the Control of Polymer Structure (II) -Preparation of polyurethane microcapsules with different chemical structures- (고분자구조제어에 의한 microcapsule의 감성기능발현(II) -화학구조에 따른 polyurethane microcapsule의 특성-)

  • Hong, Ki-Jeong;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.9 no.5
    • /
    • pp.63-74
    • /
    • 1997
  • Polyurethane microcapsules were synthesized by interfacial polymerization in an aqueous poly(ethylene glycol) dispersion with ethylenediamine as chain extender of toluene diisocyanate in perfume oil using poly(vinyl alcohol) as the stabilizing agent. The effect of chemical structure on the average particle size and distributions, morphologies, and thermal properties to design microcapsules for the sustained release system was investigated. It came to be known that polyurethane microcapsules with ethylene diamine as chain extender had a rounder, more permeable and controlled release membranes. And the release test of polyurethane microcapsules with different soft segment content was done to certify the effect of long methylene chain. According to the higher molecular weight of polyether polyol, the release rate of microencapsulated disperse dye molecular was faster.

  • PDF

Non-Local Mean based Post Processing Scheme for Performance Enhancement of Image Interpolation Method (이미지 보간기법의 성능 개선을 위한 비국부평균 기반의 후처리 기법)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.3
    • /
    • pp.49-58
    • /
    • 2020
  • Image interpolation, a technology that converts low resolution images into high resolution images, has been widely used in various image processing fields such as CCTV, web-cam, and medical imaging. This technique is based on the fact that the statistical distributions of the white Gaussian noise and the difference between the interpolated image and the original image is similar to each other. The proposed algorithm is composed of three steps. In first, the interpolated image is derived by random image interpolation. In second, we derive weighting functions that are used to apply non-local mean filtering. In the final step, the prediction error is corrected by performing non-local mean filtering by applying the selected weighting function. It can be considered as a post-processing algorithm to further reduce the prediction error after applying an arbitrary image interpolation algorithm. Simulation results show that the proposed method yields reasonable performance.