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ABSTRACT 
 

It has been an interesting challenge to find a good classifier for imbalanced data, since it is pervasive but a difficult problem to solve. 
However, classifiers developed with the assumption of well-balanced class distributions show poor classification performance for the 
imbalanced data. Among many approaches to the imbalanced data problems, the algorithmic level approach is attractive because it 
can be applied to the other approaches such as data level or ensemble approaches. Especially, the error back-propagation algorithm 
using the target node method, which can change the amount of weight-updating with regards to the target node of each class, attains 
good performances in the imbalanced data problems. In this paper, we analyze the relationship between two optimal outputs of 
neural network classifier trained with the target node method. Also, the optimal relationship is compared with those of the other 
error function methods such as mean-squared error and the n-th order extension of cross-entropy error. The analyses are verified 
through simulations on a thyroid data set. 
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1. INTRODUCTION 
 

There have been reports that, in a wide area of classifications, 
unusual or interesting class is rare among a general population 
[1]-[9]. This imbalanced class distributions have posed a 
serious difficulty for most classifiers which are trained under 
the assumption that class priors are relatively balanced and 
error costs of all classes are equal [1][2]. However, applications 
require a fairly high rate of correct detection in the minority 
class [3]. In order to achieve the requirement, there have been 
many attempts which can be categorized into the data level [3]-
[7], algorithmic level [7]-[9], and ensemble approaches [1][4]. 
Among the three approaches, the algorithmic level approach is 
attractive because it can be adopted in the data level or 
ensemble approaches. 

Feed-forward neural networks are widely applied to pattern 
classification problems and a popular method of training is the 
error back-propagation (EBP) algorithm using the mean-
squared error (MSE) [10]. When applying the EBP algorithm to 
the imbalanced data, majority class samples have a greater 
chance of training and the boundary of majority class is 
enlarged towards the minority class boundary [4]. This is so-
called “the boundary distortion”. As a result, the minority class 
samples have a less chance to be classified. One effective 
classification method to deal with the imbalanced data is the 
threshold moving method, which adjusts the threshold of each 
class such that the minority class is detected with more 
possibility [8]. 

If there is a severe imbalance of data distribution, outputs of 
neural networks have a high probability of “incorrect 
saturation” [11][12]. That is, outputs of neural networks are on 
the wrong extreme side of the sigmoid activation function. 
Although the EBP algorithm using the n-th order extension of 
cross-entropy (nCE) error function greatly reduces the incorrect 
saturation [12], it does not deal with the boundary distortion 
problem. In order to improve the EBP algorithm for the 
imbalanced data, nCE error function is modified such that 
weights associated with the target node of minority class are 
more strongly updated than those associated with the target 
node of majority class [13]. In this paper, we analyze the 
relationship between two optimal outputs of the neural network 
classifier. The analyses provide considerable insights of the 
neural network classifier for the imbalanced data. In Section 2, 
the EBP algorithm for the imbalanced data is briefly introduced. 
The statistical analyses of optimal solutions for MSE, nCE and 
the target node methods are conducted in Section 3 and they are 
verified through simulations of a thyroid data in Section 4. 
Finally, Section 5 concludes this paper. 

 
 

2. ERROR BACK-PROPAGATION ALGORITHM FOR 
IMBALANCED DATA  

 
Consider a feed-forward neural network-so called “an MLP 

(multilayer perceptron)” consisting of N inputs, H hidden nodes, 
and M output nodes. When a p-th training sample 
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Here, jiw denotes the weight connecting ix  to jh  and 

0jw  is a bias. The k-th output node is 
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Also, 0kv  is a bias and kjv denotes the weight connecting 

jh  to ky . Let the desired output vector corresponding to the 

training sample (p)x  be ],,,[ )()(
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the class from which (p)x  originates is coded as follows:  
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Here, ky  is the target node of class k. 
The conventional MSE function for P training samples is 
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To minimize MSEE , weights kjv ’s are iteratively updated by 
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is the error signal and η  is the learning rate. Also, weights 

jiw ’s are updated by 
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The above weight-updating procedure is the EBP algorithm 
[10]. 

Let us assume that there are two classes, where one is the 
minority class 1C  with 1P  training samples and the other is 

the majority class 2C  with 2P  training samples ( 21 PP << ). 
If we use the conventional EBP algorithm to train the MLP [10], 
weight-updating is overwhelmed by 2P  samples of the 
majority class and this severely distorts the class boundary 
between the two classes. That is, the boundary of the majority 
class is enlarged to the boundary of the minority class [4]. This 
gives a less chance to be classified for the minority samples 
while samples in the majority class have a greater chance to be 
classified. Finally, we attain poor classification performance for 
the minority class in spite of a high misclassification cost for 
the minority class. 

The easiest way to deal with the imbalanced class 
distribution is the threshold moving method [8]. In the testing 

phase after training of MLP, the classification threshold of 1C  
is decreased so that the minority class samples are classified 
with more possibility.  

In order to prevent the boundary distortion, Oh proposed the 
error function which can intensify weight-updating associated 
with the target node of the minority class and weaken weight-
updating associated with the target node of the majority class 
[13]. Accordingly, the proposed error function in [13] was 
defined by 

( )
( )

( )
( ) ],
12

            

12
[

)(
22)(

2
2

)(
2

)(
2

1)(
2

1

)(
12)(

1
2

)(
1

)(
1

1)(
1

∫

∑ ∫

−

−
+

−

−
−=

−

+

=
−

+

p

pm

mppmp

P

p

p

pn

nppnp

TN

dy
y

ytt

dy
y

yttE

      (9) 

where n and m (n<m) are positive integers and the MLP has 
two output nodes whose desired values are given by (4). If n=m, 
the proposed error function is the same as the nCE error 
function proposed in [12] which dramatically reduces the 
incorrect saturation of output nodes. 

The error signal based on TNE  is given by 
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Since n<m, )(
2
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1

pp δδ ≥  for 11 )( <<− p
ky . Associated 

weights are updated proportional to )( p
kδ  given by (10). TNE  

can prevent the boundary distortion as well as the incorrect 
saturation of output nodes. 
 
 

3. ANALYSES OF RELATIONSHIP BETWEEN 
OPTIMAL SOLUTIONS 

 
In the limit ∞→P , the minimizer  of MSEE  converges 

(under certain regularity conditions, Theorem 1 in [14]) 
towards the minimizer of the function 
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where {}⋅E  is the expectation operator, kT  is the random 

variable of the desired value and X  is the random input 
vector. The optimal solution minimizing the criterion (11) [in 
the space of all functions taking values in (-1,1)] is given by 

( )Xb  whose components are [12][14] 

( ) { } ( ) .,,2,1 ,12| MkQTEb kkk =−== xxx     (12) 

Here, ( ) [ ]xXXx == | class from originates Pr kQk  is the 
posterior probability. We assume that the MLP has two outputs 
in order to cope with the bi-class imbalanced data problems. 
Then, by substituting 

( ) ( )xx 12 1 QQ −=              (13) 
into (12), the relationship between the two optimal outputs is 
given by 

( ) ( ).12 xx bb −=                (14) 
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For the nCE error function given by 
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the optimal solutions are [12] 
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which is the same result with (14). Because MSEE  and 

nCEE have optimal solutions which are not varying with 
respect to k (as given by (12) and (16) respectively), the 
relationship between two optimal outputs is a straight line with 
a negative slope. 

The optimal solution minimizing TNE  can be derived as 

( ) ( )( )( )xx 11 Qhgb n=  and  ( ) ( )( )( )xx 22 Qhgb m= ,  (22) 

since TNE  is a modification of nCEE  with the parameters n 

and m related to the outputs 1y  and 2y , respectively. Thus, 
we can take 
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By substituting (17) and (20) into (23), the relationship is given 
by 
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Fig. 1. ( )x2b  vs. ( )x1b  for MSE, nCE, and target node 

methods, respectively. ( )xkb  denotes the optimal solution of 
the k-th output in each method. 

Table 1. Data set distribution of “Ann-thyroid13” for training 
and test. 

 Minority 
Class 

Majority 
Class 

Total 
Samples 

Minority 
Ratio [%] 

Training  93 3488 3581 2.60 
Test  73 3178 3251 2.25 

 
Fig. 1 shows the curves of (14) and (24) with the range of 

( ) 11 +<<− xkb . For MSEE  and nCEE , ( )x2b  vs. ( )x1b  

is a straight line with a negative slope. On the contrary, TNE  

has the curve of ( )x2b  vs. ( )x1b  with a steep slope at both 
ends of the horizontal axis. During the training of MLP based 
on TNE , weights associated with 1y  is more strongly 

updated than weights associated with 2y . Therefore, after 

successful training of MLP, 1y  varies much less than 2y  
near the desired vector points (+1,-1) and (-1,+1). This 
explanation coincides with the optimal curve for TNE . 
 
 

4. SIMULATIONS 
 

The analyses are verified through simulations of “Ann-
thyroid13” [4] data set. The “Ann-thyroid13” data was 
transformed from “Ann-thyroid” data [15], in which class 1 is 
the minority class while class 3 is treated as the majority class. 
Table 1 describes the data set distribution for training and test. 

MLP consisting of 21 inputs, 16 hidden and 2 output nodes is 
trained for the “Ann-thyroid13” data using MSE, nCE, and the 
target node methods. The initial weights of MLP were drawn at 

random from a uniform distribution on ]101 ,101[ 44 −− ××− . 

Learning rates η ’s are derived so that |}|{ )( p
kE δη  has the 

same value in each method. As a result, learning rates of 0.006, 
0.005, and 0.004 are used for the conventional EBP using MSE, 
nCE with n=4, and the target node method with n=2 and m=4, 
respectively. After training of 20,000 epochs, we plotted 2y  

vs. 1y  by presenting test samples to each trained MLP. 
Fig. 2 shows the plots of MLP outputs trained with the MSE 

function. Fig. 2(a) corresponds to the test samples in the 
minority class whose desired point is 1T  at (+1,-1). Also, Fig. 
2(b) corresponds to the test samples in the majority class whose 
desired point is 2T  at (-1,+1). All the points of Fig. 2 are on 

the line between 1T  and 2T , which coincides with the 
analysis result in Fig. 1. In the figures, the straight line from  
(-1,-1) to (+1,+1) is the decision line for classification based on 
the Max. rule. That is, samples in the area below the decision 
line is classified as 1C  and samples in the opposite area is 

classified as 2C . As shown in Fig. 2(a), the minority class 
samples below the decision line are correctly classified ones 
while those above the decision line are incorrectly classified 
ones. Also, at Fig. 2(b), the majority class samples above the 
decision line are correctly classified. Although the desired point  
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(a) Minority class samples 

 
(b) Majority class samples 

Fig. 2. Plots of MLP outputs trained with MSE function. 
 

 
(a) Minority class samples 

 
(b) Majority class samples 

Fig. 3. Plots of MLP outputs trained with the n-th order 
extension of cross-entropy (nCE) error function (n=4). 

 
of the minority class is 1T , there are some minority samples 

located very closely to 2T  (Fig. 2(a)) and these are the 
incorrectly saturated samples. As shown in Fig. 2(b), the majority 

samples very close to 1T  are incorrectly saturated, too. 
Fig. 3 shows the plots of MLP outputs trained with the nCE 

error function. The points are on the straight line between 1T  

and 2T , which coincides with the analysis result in Fig. 1. 
Comparing Fig. 2 with Fig. 3, the points in Fig. 2 are located 
more closely to 1T  or 2T  than the points in Fig. 3. This 
supports that MSE method has the weakness of over-fitting and 
nCE alleviates the degree of over-fitting [12]. Especially, the 
incorrectly saturated samples in Fig. 3 are less than the 
incorrectly saturated samples in Fig. 2. Thus, we can say that 
nCE method reduces the incorrect saturation of output nodes 
[12]. However, nCE cannot prevent that weights are mainly 
updated by the majority class samples. 
 
 

 
(a) Minority class samples 

 
(b) Majority class samples 

Fig. 4. Plots of MLP outputs trained with the target node 
method (n=2, m=4). 

 
Fig. 4 shows the plots of MLP outputs trained with the target 

node method. The points are on the curve having the same 
shape with the analysis result in Fig. 1. Comparing with Figs. 
2(a) and 3(a), incorrectly saturated minority samples in Fig. 
4(a) are much less. Also, the number of minority samples 
above the decision line is only four and the classification ratio 
of the minority class is 94.52%, the best among the comparison 
methods (Table 2). The target node method keeps the 
characteristic of nCE to prevent the incorrect saturation of 
output nodes. Also, by controlling the strength of error signal 
given by (10), the target node method can prevent the boundary 
distortion and improve the classification of minority class. 
Table 2 shows the classification ratio of test samples in each 
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method. As expected, classification ratios of the minority class 
in MSE and nCE methods are around eighty percent. In the 
target node method, on the contrary, the classification ratio of 
the minority class is much improved without severe 
degradation of the majority class classification ratio. 

 
Table 2. Classification ratio of test samples [%]. 

 MSE nCE Target Node 
Minoroty 82.19 80.82 94.52 
Majority 99.28 99.62 98.80 

 
 

5. CONCLUSION 
 

In this paper, we considered the optimal outputs of feed-
forward neural network classifier trained for the imbalanced 
data. Through statistical analyses, we derived the relationship 
between the two optimal outputs of neural network classifier. 
The derived results coincided with the plots through 
simulations of “Ann-thyroid” data. 

By plotting outputs of the neural network classifier trained 
with the MSE, we verified that the classifier was over-fitted 
and some outputs were incorrectly saturated. In the case of nCE, 
the output plots showed that the over-fitting and incorrect 
saturation were alleviated. When the classifier was trained with 
the target node method, the minority target node varies much 
less than the majority target node near the target points. This 
characteristic prevented the boundary distortion problem and 
improved the classification of interesting minority class 
samples. 
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