• 제목/요약/키워드: Weibull statistics

검색결과 220건 처리시간 0.022초

모수족에서 평균 잔여수명의 추정량 (Estimator of the Mean Residual Life for Some Parametric Families)

  • Kuey Chung Choi;Kyung Hyun Nam
    • 응용통계연구
    • /
    • 제7권2호
    • /
    • pp.89-100
    • /
    • 1994
  • 본 논문에서는 평균 잔여수명의 추정에 있어서 Weibull과 gamma 분포의 평균 잔여수명을 구하는데 적분이 쉽게 되지 않으므로 부분적률에 근거한 새로운 추정량을 제시하였으며, 비록 이 추정량은 일치추정량이 아니지만 소표본인 경우에서 일치추정량인 기존의 경험적 추정량보다 평균제곱오차가 작다는 것을 몬테칼로 기법을 써서 보였다.

  • PDF

Exploring Graphically and Statistically the Reliability of Medium Density Fiberboard

  • Guess, Frank M.;Edwards, David J.;Pickrell, Timothy M.;Young, Timothy M.
    • International Journal of Reliability and Applications
    • /
    • 제4권4호
    • /
    • pp.157-170
    • /
    • 2003
  • In this paper we apply statistical reliability tools to manage and seek improvements in the strengths of medium density fiberboard (MDF). As a part of the MDF manufacturing process, the product undergoes destructive testing at various intervals to determine compliance with customer′s specifications. Workers perform these tests over sampled cross sections of the MDF panel to measure the internal bond (IB) in pounds per square inches until failure. We explore both graphically and statistically this "pressure-to-failure" of MDF. Also, we briefly comment on reducing sources of variability in the IB of MDF.

  • PDF

Optimal Preventive Maintenance Policy for a Repairable System

  • Jung, Ki-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.367-377
    • /
    • 2006
  • This paper develops a periodic preventive maintenance(PM) policy following the expiration of warranty. Two types of warranty are considered: renewing warranty and non-renewing warranty. Also, we consider the situation where each PM cost is an increasing function of the PM effect. We determine the optimal number of PM's before replacing the system by a new one and the optimal length of period for the periodic PM following the expiration of warranty. Explicit solutions to determine the optimal periodic PM are presented for the Weibull distribution case.

  • PDF

2차원 데이터의 여러 가지 분석방법 (Various types of analyses for two-dimensional data)

  • 백재욱
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제10권4호
    • /
    • pp.251-263
    • /
    • 2010
  • Modelling for failures is important for reliability analysis since failures of products such as automobiles occur as both time and usage progress and the results from the proper analysis of the two-dimensional data can be used for establishing warranty assurance policy. Hence, in this paper general issues which concern modelling failures are discussed, and both one-dimensional approaches and two-dimensional approaches to two-dimensional data are investigated. Finally non-parametric approaches to two-dimensional data are presented as a means of exploratory data analyses.

Statistical Inference of Some Semi-Markov Reliability Models

  • Alwasel, I.A.
    • International Journal of Reliability and Applications
    • /
    • 제9권2호
    • /
    • pp.167-182
    • /
    • 2008
  • The objective of this paper is to discuss the stochastic analysis and the statistical inference of a three-states semi-Markov reliability model. Using the maximum likelihood procedure, the parameters included in this model are estimated. Based on the assumption that the lifetime and repair time of the system are gener-alized Weibull random variables, the reliability function of this system is obtained. Then, the distribution of the first passage time of this system is derived. Many important special cases are discussed. Finally, the obtained results are compared with those available in the literature.

  • PDF

교체-수리보증이 종료된 이후의 예방보전정책 (Preventive maintenance policy following the expiration of replacement-repair warranty)

  • 정기문
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권2호
    • /
    • pp.57-66
    • /
    • 2012
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of replacement-repair warranty. Under this preventive maintenance model, we derive the expressions for the expected cycle length, the expected total cost and the expected cost rate per unit time. Also, we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

A Bayesian approach to maintenance strategy for non-renewing free replacement-repair warranty

  • Jung, K.M.
    • International Journal of Reliability and Applications
    • /
    • 제12권1호
    • /
    • pp.41-48
    • /
    • 2011
  • This paper considers the maintenance model suggested by Jung and Park (2010) to adopt the Bayesian approach and obtain an optimal replacement policy following the expiration of NFRRW. As the criteria to determine the optimal maintenance period, we use the expected cost during the life cycle of the system. When the failure times are assumed to follow a Weibull distribution with unknown parameters, we propose an optimal maintenance policy based on the Bayesian approach. Also, we describe the revision of uncertainty about parameters in the light of data observed. Some numerical examples are presented for illustrative purpose.

  • PDF

Optimal Burn-In under Waranty

  • Kim, Kui-Nam;Lee, Kwang-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.719-728
    • /
    • 1999
  • This paper discusses an optimal burn-in procedure to minimize total costs based on the assumption that the failure rate pattern follows a bimodal mixed Weibull distribution. The procedure will consider warranty period as a factor of the total expected burn-in cost. A cost model is formulated to find the optimal burn-in time that minimizes the expected burn-in cost. Conditional reliability for warranty period will be discussed. An illustrative example is included to show how to use the cost model in prctice.

  • PDF

Exploring Reliability of Wood-Plastic Composites: Stiffness and Flexural Strengths

  • Perhac, Diane G.;Young, Timothy M.;Guess, Frank M.;Leon, Ramon V.
    • International Journal of Reliability and Applications
    • /
    • 제8권2호
    • /
    • pp.153-173
    • /
    • 2007
  • Wood-plastic composites (WPC) are gaining market share in the building industry because of durability/maintenance advantages of WPC over traditional wood products and because of the removal of chromated copper arsenate (CCA) pressure-treated wood from the market. In order to ensure continued market share growth, WPC manufacturers need greater focus on reliability, quality, and cost. The reliability methods outlined in this paper can be used to improve the quality of WPC and lower manufacturing costs by reducing raw material inputs and minimizing WPC waste. Statistical methods are described for analyzing stiffness (tangent modulus of elasticity: MOE) and flexural strength (modulus of rupture: MOR) test results on sampled WPC panels. Descriptive statistics, graphs, and reliability plots from these test data are presented and interpreted. Sources of variability in the MOE and MOR of WPC are suggested. The methods outlined may directly benefit WPC manufacturers through a better understanding of strength and stiffness measures, which can lead to process improvements and, ultimately, a superior WPC product with improved reliability, thereby creating greater customer satisfaction.

  • PDF

Tightened-Normal-Tightened Group Acceptance Sampling Plan for Assuring Percentile Life

  • Aslam, Muhammad;Azam, Muhammad;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • 제11권4호
    • /
    • pp.390-396
    • /
    • 2012
  • The present paper extends the idea of tightened-normal-tightened sampling scheme to group acceptance sampling plans under the time truncated life tests. We consider three famous distributions that are widely used in the area of reliability such as the generalized exponential distribution, the Weibull distribution, and the Birnbaum-Saunders distribution in the proposed sampling plan. The plan parameters are determined such that the producer's risk and the consumer's risk are satisfied at the specified median life. Extensive tables showing plan parameters are provided at various values of the experiment time and the consumer's risk for each of three distributions for the practical use. Some examples are given to illustrate the procedure of the proposed plan.