• 제목/요약/키워드: Weather forecasting

검색결과 558건 처리시간 0.025초

지표격자해상도 및 우수관망 간소화 수준에 따른 도시홍수 예측 성능검토 (Performance Analysis of Grid Resolution and Storm Sewage Network for Urban Flood Forecasting)

  • 심상보;김형준
    • 한국안전학회지
    • /
    • 제39권1호
    • /
    • pp.70-81
    • /
    • 2024
  • With heavy rainfall due to extreme weather causing increasing damage, the importance of urban flood forecasting continues to grow. To forecast urban flooding accurately and promptly, a sewer network and surface grid with appropriate detail are necessary. However, for urban areas with complex storm sewer networks and terrain structures, high-resolution grids and detailed networks can significantly prolong the analysis. Therefore, determining an appropriate level of network simplification and a suitable surface grid resolution is essential to secure the golden time for urban flood forecasting. In this study, InfoWorks ICM, a software program capable of 1D-2D coupled simulation, was used to examine urban flood forecasting performance for storm sewer networks with various levels of simplification and different surface grid resolutions. The inundation depth, inundation area, and simulation time were analyzed for each simplification level. Based on the analysis, the simulation time was reduced by up to 65% upon simplifying the storm sewer networks and by up to 96% depending on the surface grid resolution; further, the inundation area was overestimated as the grid resolution increased. This study provides insights into optimizing the simplification level and surface grid resolution for storm sewer networks to ensure efficient and accurate urban flood forecasting.

공군 현업 수치예보를 위한 삼차원 변분 자료동화 체계 개발 연구 (Development of the Three-Dimensional Variational Data Assimilation System for the Republic of Korea Air Force Operational Numerical Weather Prediction System)

  • 노경조;김현미;김대휘
    • 한국군사과학기술학회지
    • /
    • 제21권3호
    • /
    • pp.403-412
    • /
    • 2018
  • In this study, a three-dimensional variational(3DVAR) data assimilation system was developed for the operational numerical weather prediction(NWP) system at the Republic of Korea Air Force Weather Group. The Air Force NWP system utilizes the Weather Research and Forecasting(WRF) meso-scale regional model to provide weather information for the military service. Thus, the data assimilation system was developed based on the WRF model. Experiments were conducted to identify the nested model domain to assimilate observations and the period appropriate in estimating the background error covariance(BEC) in 3DVAR. The assimilation of observations in domain 2 is beneficial to improve 24-h forecasts in domain 3. The 24-h forecast performance does not change much depending on the estimation period of the BEC in 3DVAR. The results of this study provide a basis to establish the operational data assimilation system for the Republic of Korea Air Force Weather Group.

Satellite-based In-situ Monitoring of Space Weather: KSEM Mission and Data Application

  • Oh, Daehyeon;Kim, Jiyoung;Lee, Hyesook;Jang, Kun-Il
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권3호
    • /
    • pp.175-183
    • /
    • 2018
  • Many recent satellites have mission periods longer than 10 years; thus, satellite-based local space weather monitoring is becoming more important than ever. This article describes the instruments and data applications of the Korea Space wEather Monitor (KSEM), which is a space weather payload of the GeoKompsat-2A (GK-2A) geostationary satellite. The KSEM payload consists of energetic particle detectors, magnetometers, and a satellite charging monitor. KSEM will provide accurate measurements of the energetic particle flux and three-axis magnetic field, which are the most essential elements of space weather events, and use sensors and external data such as GOES and DSCOVR to provide five essential space weather products. The longitude of GK-2A is $128.2^{\circ}E$, while those of the GOES satellite series are $75^{\circ}W$ and $135^{\circ}W$. Multi-satellite measurements of a wide distribution of geostationary equatorial orbits by KSEM/GK-2A and other satellites will enable the development, improvement, and verification of new space weather forecasting models. KSEM employs a service-oriented magnetometer designed by ESA to reduce magnetic noise from the satellite in real time with a very short boom (1 m), which demonstrates that a satellite-based magnetometer can be made simpler and more convenient without losing any performance.

건물의 단기부하 예측을 위한 기상예측 모델 개발 (Development of Weather Forecast Models for a Short-term Building Load Prediction)

  • 전병기;이경호;김의종
    • 한국태양에너지학회 논문집
    • /
    • 제38권1호
    • /
    • pp.1-11
    • /
    • 2018
  • In this work, we propose weather prediction models to estimate hourly outdoor temperatures and solar irradiance in the next day using forecasting information. Hourly weather data predicted by the proposed models are useful for setting system operating strategies for the next day. The outside temperature prediction model considers 3-hourly temperatures forecasted by Korea Meteorological Administration. Hourly data are obtained by a simple interpolation scheme. The solar irradiance prediction is achieved by constructing a dataset with the observed cloudiness and correspondent solar irradiance during the last two weeks and then by matching the forecasted cloud factor for the next day with the solar irradiance values in the dataset. To verify the usefulness of the weather prediction models in predicting a short-term building load, the predicted data are inputted to a TRNSYS building model, and results are compared with a reference case. Results show that the test case can meet the acceptance error level defined by the ASHRAE guideline showing 8.8% in CVRMSE in spite of some inaccurate predictions for hourly weather data.

지구 통계 모형을 이용한 양파 재배지 농업기상정보 생성 방법 (Production of Agrometeorological Information in Onion Fields using Geostatistical Models)

  • 임지은;윤상후
    • 한국환경과학회지
    • /
    • 제27권7호
    • /
    • pp.509-518
    • /
    • 2018
  • Weather is the most influential factor for crop cultivation. Weather information for cultivated areas is necessary for growth and production forecasting of agricultural crops. However, there are limitations in the meteorological observations in cultivated areas because weather equipment is not installed. This study tested methods of predicting the daily mean temperature in onion fields using geostatistical models. Three models were considered: inverse distance weight method, generalized additive model, and Bayesian spatial linear model. Data were collected from the AWS (automatic weather system), ASOS (automated synoptic observing system), and an agricultural weather station between 2013 and 2016. To evaluate the prediction performance, data from AWS and ASOS were used as the modeling data, and data from the agricultural weather station were used as the validation data. It was found that the Bayesian spatial linear regression performed better than other models. Consequently, high-resolution maps of the daily mean temperature of Jeonnam were generated using all observed weather information.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

Internet-based Information System for Agricultural Weather and Disease and Insect fast management for rice growers in Gyeonggi-do, Korea

  • S.D. Hong;W.S. Kang;S.I. Cho;Kim, J.Y.;Park, K.Y;Y.K. Han;Park, E.W.
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.108.2-109
    • /
    • 2003
  • The Gyeonggi-do Agricultural Research and Extension Services has developed a web-site (www.epilove.com) in collaboration with EPINET to provide information on agricultural weather and rice disease and insect pest management in Gyeonggi-do. Weather information includes near real-time weather data monitored by automated weather stations (AWS) installed at rice paddy fields of 11 Agricultural Technology Centers (ATC) in Gyeonggi-do, and weekly weather forecast by Korea Meteorological Administration (KMA). Map images of hourly air temperature and rainfall are also generated at 309m x 309m resolution using hourly data obtained from AWS installed at 191 locations by KMA. Based on near real-time weather data from 11 ATC, hourly infection risks of rice blast, sheath blight, and bacterial grain rot for individual districts are estimated by disease forecasting models, BLAST, SHBLIGHT, and GRAINROT. Users can diagnose various diseases and insects of rice and find their information in detail by browsing thumbnail images of them. A database on agrochemicals is linked to the system for disease and insect diagnosis to help users search for appropriate agrochemicals to control diseases and insect pests.

  • PDF

K-평균 군집분석을 이용한 동아시아 지역 날씨유형 분류 (Classification of Weather Patterns in the East Asia Region using the K-means Clustering Analysis)

  • 조영준;이현철;임병환;김승범
    • 대기
    • /
    • 제29권4호
    • /
    • pp.451-461
    • /
    • 2019
  • Medium-range forecast is highly dependent on ensemble forecast data. However, operational weather forecasters have not enough time to digest all of detailed features revealed in ensemble forecast data. To utilize the ensemble data effectively in medium-range forecasting, representative weather patterns in East Asia in this study are defined. The k-means clustering analysis is applied for the objectivity of weather patterns. Input data used daily Mean Sea Level Pressure (MSLP) anomaly of the ECMWF ReAnalysis-Interim (ERA-Interim) during 1981~2010 (30 years) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Using the Explained Variance (EV), the optimal study area is defined by 20~60°N, 100~150°E. The number of clusters defined by Explained Cluster Variance (ECV) is thirty (k = 30). 30 representative weather patterns with their frequencies are summarized. Weather pattern #1 occurred all seasons, but it was about 56% in summer (June~September). The relatively rare occurrence of weather pattern (#30) occurred mainly in winter. Additionally, we investigate the relationship between weather patterns and extreme weather events such as heat wave, cold wave, and heavy rainfall as well as snowfall. The weather patterns associated with heavy rainfall exceeding 110 mm day-1 were #1, #4, and #9 with days (%) of more than 10%. Heavy snowfall events exceeding 24 cm day-1 mainly occurred in weather pattern #28 (4%) and #29 (6%). High and low temperature events (> 34℃ and < -14℃) were associated with weather pattern #1~4 (14~18%) and #28~29 (27~29%), respectively. These results suggest that the classification of various weather patterns will be used as a reference for grouping all ensemble forecast data, which will be useful for the scenario-based medium-range ensemble forecast in the future.

시계열 기상 모델을 이용한 동적 송전 용량의 예측 (Prediction of Dynamic Line Rating by Time Series Weather Models)

  • 김동민;배인수;김진오;장경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.35-38
    • /
    • 2005
  • This paper suggests the method that forecast Dynamic Line Rating (DLR). Thermal Overload Risk (TOR) of next time is forecasted based on current weather condition and DLR value by Monte Carlo Simulation (MCS). To model weather element of transmission line for MCS, we will propose the use of weather forecast system and statistical models that time series law is applied. Also, through case study, forecasted TOR probability confirmed can utilize by standard that decide DLR of next time. In short, proposed method may be used usefully to keep safety of transmission line and reliability of supply of electric Power by forecasting transmission capacity of next time.

  • PDF

GME 모델을 이용한 태풍 모의 (Typhoon Simulation with GME Model)

  • 오재호
    • 한국가시화정보학회지
    • /
    • 제5권2호
    • /
    • pp.9-13
    • /
    • 2007
  • Typhoon simulation based on dynamical forecasting results is demonstrated by utilizing geodesic model GME (operational global numerical weather prediction model of German Weather Service). It is based on uniform icosahedral-hexagonal grid. The GME gridpoint approach avoids the disadvantages of spectral technique as well as the pole problem in latitude-longitude grids and provides a data structure extremely well suited to high efficiency on distributed memory parallel computers. In this study we made an attempt to simulate typhoon 'NARI' that passed over the Korean Peninsula in 2007. GME has attributes of numerical weather prediction model and its high resolution can provide details on fine scale. High resolution of GME can play key role in the study of severe weather phenomenon such as typhoons. Simulation of future typhoon that is assumed to occur under the global warming situation shows that the life time of that typhoon will last for a longer time and the intensity will be extremely stronger.