DOI QR코드

DOI QR Code

Satellite-based In-situ Monitoring of Space Weather: KSEM Mission and Data Application

  • Oh, Daehyeon (National Meteorological Satellite Center, Korea Meteorological Administration) ;
  • Kim, Jiyoung (National Meteorological Satellite Center, Korea Meteorological Administration) ;
  • Lee, Hyesook (National Meteorological Satellite Center, Korea Meteorological Administration) ;
  • Jang, Kun-Il (National Meteorological Satellite Center, Korea Meteorological Administration)
  • Received : 2018.07.09
  • Accepted : 2018.08.31
  • Published : 2018.09.30

Abstract

Many recent satellites have mission periods longer than 10 years; thus, satellite-based local space weather monitoring is becoming more important than ever. This article describes the instruments and data applications of the Korea Space wEather Monitor (KSEM), which is a space weather payload of the GeoKompsat-2A (GK-2A) geostationary satellite. The KSEM payload consists of energetic particle detectors, magnetometers, and a satellite charging monitor. KSEM will provide accurate measurements of the energetic particle flux and three-axis magnetic field, which are the most essential elements of space weather events, and use sensors and external data such as GOES and DSCOVR to provide five essential space weather products. The longitude of GK-2A is $128.2^{\circ}E$, while those of the GOES satellite series are $75^{\circ}W$ and $135^{\circ}W$. Multi-satellite measurements of a wide distribution of geostationary equatorial orbits by KSEM/GK-2A and other satellites will enable the development, improvement, and verification of new space weather forecasting models. KSEM employs a service-oriented magnetometer designed by ESA to reduce magnetic noise from the satellite in real time with a very short boom (1 m), which demonstrates that a satellite-based magnetometer can be made simpler and more convenient without losing any performance.

Keywords

References

  1. Acuna MH, Space-based magnetometers, Rev. Sci. Instrum. 73, 3717 (2002). https://doi.org/10.1063/1.1510570
  2. Acuna MH, Curtis D, Scheifele JL, Russell CT, Schroeder P, et al., The STEREO/IMPACT magnetic field experiment, Space Sci. Rev. 136, 203-226 (2008). https://doi.org/10.1007/s11214-007-9259-2
  3. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, et al., GEANT4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res. A 506, 250-303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8
  4. Alfven H, Existence of electromagnetic-hydrodynamic waves, Nature 150, 405-406 (1942). https://doi.org/10.1038/150405d0
  5. Anderson CW, Lanzerotti LJ & Maclennan CG, Outage of the L-4 system and the geomagnetic disturbance of August 4, 1972, Bell Syst. Tech. J. 53, 1817-1837 (1974). https://doi.org/10.1002/j.1538-7305.1974.tb02817.x
  6. Andreeva VA, Tsyganenko NA, Empirical modeling of the quiet and storm time geosynchronous magnetic field, Space Weather 16, 16-36 (2018). https://doi.org/10.1002/2017SW001684
  7. Angelopoulos, The THEMISS mission, Space Sci. Rev. 141, 5-34 (2008). https://doi.org/10.1007/s11214-008-9336-1
  8. Auster U, Magnes W, Delva M, Valavanoglou A, Leitner S, et al., Space weather magnetometer set with automated AC spacecraft field correction for Geo-Kompsat-2A, in 2016 ESA Workshop on Aerospace EMC, Valencia, Spain, 23-25 May 2016.
  9. Balogh A, Planetary magnetic field measurements: missions and instrumentation, Space Sci. Rev. 152, 23-97 (2010). https://doi.org/10.1007/s11214-010-9643-1
  10. Bentley J, Sheppard D, Rich F, Redmon R, Loto'aniu P, et al., Exploring the use of Alfven waves in magnetometer at geosynchronous orbit, in 2016 AGU Fall Meeting; 12-16 Dec 2016.
  11. Borodkova NL, Liu JB, Huang ZH, Zastenker GN, Geosynchronous magnetic field response to the large and fast solar wind dynamic pressure change, Adv. Space Res. 41, 1220-1225 (2008). https://doi.org/10.1016/j.asr.2007.05.075
  12. Choi HS, Lee J, Cho KS, Kwak YS, Cho IH, et al., Analysis of GEO spacecraft anomalies: space weather relationships, Space Weather 9, S06001 (2011). https://doi.org/10.1029/2010SW000597
  13. Davidson WF, The magnetic storm of March 24, 1940 - Effect in the power system, Edison Elect. Inst. Bull. 365-366 & 374 (1940).
  14. Davis Jr. L, Smith EJ, The in-flight determination of spacecraft magnetic field zeros, EOS Trans. AGU. 49, 257 (1968).
  15. Dong YX, Cao JB, Liu WL, Zhang L, Li LY, Response of magnetic fields at geosynchronous orbit and on the ground to the sudden changes of IMF $B_Z$, Sci. China Tech Sci. 57, 360-367 (2014). https://doi.org/10.1007/s11431-013-5428-6
  16. Ferguson DC, Denig WF, Rodriguez JV, plasma conditions during the Galaxy 15 anomaly and the possibility of ESD from subsurface charging, Proceedings of the 49th AIAA Aerospace Science Meeting including the New Horizons Forum & Aerospace Exposition, Orlando, FL, 4-7 January 2011.
  17. GSFC, GOES I-M DataBook: 1996 (NASA GSFC, Greenbelt, 1996).
  18. Goldsten JO, Maurer RH, Peplowski PN, Holmes-Siedle AG, Herrmann CC, et al., The engineering radiation monitor for the radiation belt storm probes mission, Space Sci. Rev. 179, 485-502 (2013). https://doi.org/10.1007/s11214-012-9917-x
  19. Hasegawa A, Drift mirror instability of the magnetosphere, Phys. Fluids 12, 2642 (1969). https://doi.org/10.1063/1.1692407
  20. Huang CL, Spence HE, Howard JS, Tsyganenko NA, A quantitative assessment of empirical magnetic field models at geosynchronous orbit during magnetic storms, J. Geophys. Res. 113, A04208 (2008). https://doi.org/10.1029/2007JA012623
  21. KASI, ETRI, GEO-KOMPSAT-2A Dst Index Prediction Algorithm Theoretical Basis Document, KASI & ETRI, Version 1.0 (2016a).
  22. KASI, ETRI , GEO-KOMPSAT-2A Electron Flux Prediction Algorithm Theoretical Basis Document, KASI & ETRI, Version 1.1 (2016b)
  23. KASI, ETRI , GEO-KOMPSAT-2A Kp Index Prediction Algorithm Theoretical Basis Document, KASI & ETRI, Version 1.0 (2016c)
  24. KASI, ETRI , GEO-KOMPSAT-2A Magnetospheric Particle Environment Algorithm Theoretical Basis Document, KASI & ETRI, Version 0.1 (2016d)
  25. KASI, ETRI , GEO-KOMPSAT-2A Spacecraft Charging Monitor Algorithm Theoretical Basis Document, KASI & ETRI, Version 0.1 (2016e)
  26. Kwon HJ, Kim KH, Jee G, Park JS, Nishiyama Y, Plasmapause location under quiet geomagnetic conditions (Kp ${\leq}$ 1): THEMIS observations, Geophys. Res. Lett. 42, 7303-7310 (2015). https://doi.org/10.1002/2015GL066090
  27. Lanzerotti LJ, Gregori GP, Telluric currents: the natural environment and interactions with man-made systems, The Earth's Electrical Environment, eds. Roble RG, Krider EP (National Academy Press, Washington D.C., 1986), 232-257.
  28. Lee DY, Lyons LR, Geosynchronous magnetic field response to solar wind dynamic pressure pulse, J. Geophys. Res. 109, A04201 (2004). https://doi.org/10.1029/2003JA010076
  29. Leinweber HK, Russell CT, Torkar K, Zhang TL, Angelopoulos V, An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field, Meas. Sci. Technol. 19, 055104 (2008). https://doi.org/10.1088/0957-0233/19/5/055104
  30. Leinweber HK, In-flight Calibration of Space-borne Magnetometers, PhD dissertation, Graz University of Technology, (2011).
  31. Lohmeyer WQ, Cahoy K, Space weather radiation effects on geostationary satellite solid-state power amplifiers, Space Weather 11, 476-488 (2013). https://doi.org/10.1002/swe.20071
  32. Loto'aniu TM, Singer HJ, Rodriguez JV, Green J, Denig W, et al., Space weather conditions during the Galaxy 15 spacecraft anomaly, Space Weather 13, 484-502 (2015). https://doi.org/10.1002/2015SW001239
  33. Menzel WP, Purdom JFW, Introducing GOES-I: the first of a new generation of geostationary operational environmental satellites, Bull. Am. Meteorol. Soc. 75, 757-782 (1994). https://doi.org/10.1175/1520-0477(1994)075<0757:IGITFO>2.0.CO;2
  34. Nicholson SB, The great magnetic storm of march 24, Publ. Astron. Soc. Pac. 52, 169-171 (1940). https://doi.org/10.1086/125156
  35. Oughton EJ, Skelton A, Horne RB, Thomson AWP, Gaunt CT, Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure, Space Weather 15, 65-83 (2017). https://doi.org/10.1002/2016SW001491
  36. Pudney MA, Carr CM, Schwartz SJ, Howarth SI, Automatic parameterization for magnetometer zero offset determination, Geosci. Instrum. Method. Data Syst. 1, 103-109 (2012). https://doi.org/10.5194/gi-1-103-2012
  37. Sanny J, Tapia JA, Sibeck DG, Moldwin MB, Quiet time variability of the geosynchronous magnetic field and its response to the solar wind, J. Geophys. Res. 107, 443 (2002). https://doi.org/10.1029/2002JA009448
  38. Shin DK, Lee DY, Kim JH, Cho JH, Prediction model of the outer radiation belt developed by Chungbuk National University, J. Astron. Space Sci. 31, 303 (2014). https://doi.org/10.5140/JASS.2014.31.4.303
  39. Shprits YY, Subbotin D, Ni B, Evolution of electron fluxes in the outer radiation belt computed with the VERB code, J. Geophys. Res., 114, A11209 (2009). https://doi.org/10.1029/2008JA013784
  40. Singer H, Matheson L, Grubb R, Newman A, Bouwer D, Monitoring space weather with the GOES magnetometers, Proceeding of the SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, 4-9 August 1996.
  41. Subbotin DA, Shprits YY, Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code, Space Weather 7, S100001 (2009). https://doi.org/10.1029/2008SW000452
  42. Tayler B, Underwood CI, Evans HDR, Ryden K, Rodgers D, et al., Results from the Galileo Giove-a radiation monitors and comparison with existing radiation belt models, IEEE Trans. Nucl. Sci. 54, 1076-1081 (2007). https://doi.org/10.1109/TNS.2007.892115
  43. Tsurutani BT, Smith EJ, Anderson RR, Ogilvie KW, Scudder JD, et al., Lion roars and nonoscillatory drift mirror waves in the magnetosheath, J. Geophys. Res. 87, 6060-6072 (1982). https://doi.org/10.1029/JA087iA08p06060
  44. Tsyganenko NA, Sitnov MI, Magnetospheric configurations from a high-resolution data-based magnetic field model, J. Geophys. Res. 112, A06225 (2007). https://doi.org/10.1029/2007JA012260
  45. van Allen JA, McIlwain CE, Ludwig GH, Radiation observations with satellite 1958 ${\varepsilon}$, J. Geophys. Res. 64, 271-286 (1959). https://doi.org/10.1029/JZ064i003p00271
  46. Wing S, Sibeck DG, Effects of interplanetary magnetic field z component and the solar wind dynamic pressure on the geosynchronous magnetic field, J. Geophys. Res. 102, 7207-7216 (1997). https://doi.org/10.1029/97JA00150
  47. Yang J, Zhang Z, Wei C, Lu F, Guo Q, Introducing the new generation of chinese geostationary weather satellites, Fengyun-4, Bull. Amer. Meteorol. Soc. 98, 1637-1768 (2017). https://doi.org/10.1175/BAMS-D-16-0065.1