• 제목/요약/키워드: Weather and Seasonal Factors

검색결과 70건 처리시간 0.021초

일기엔트로피 및 정보비에 의한 장마기의 일기대표성 설정 - 서울, 대구, 광주, 충주, 부여를 중심으로 - (The Weather Representativeness in Changma Period Established by the Weather Entropy and Information Ratio - Focused on Seoul, Taegu, Gwangju, Chungju, Puyo -)

  • 박현욱;문병채
    • 한국환경과학회지
    • /
    • 제12권4호
    • /
    • pp.399-417
    • /
    • 2003
  • The seasonal variation and frequency of rainfalls of Korea peninsula in Changma period show strong local weather phenomenon because of it's topographical and geographical factors in Northeast side of Asia. Based on weather entropy(statistical parameter)-the amount of average weather information-and information ratio, we can define each area's weather representativeness, which can show us more constant form included topographical and geographical factors and seasonal variation. The data used for this study are the daily precipitation and cloudiness during the recent ten years(1990-1999) at the 73 stations in Korea. To synthesize weather Entropy, information ratio of decaying tendency and half$.$decay distance, Seoul's weather representativeness has the smallest in Summer Changma period. And Puyo has the largest value in September.

Human Mastadenovirus Infections and Meteorological Factors in Cheonan, Korea

  • Oh, Eun Ju;Park, Joowon;Kim, Jae Kyung
    • 한국미생물·생명공학회지
    • /
    • 제49권2호
    • /
    • pp.249-254
    • /
    • 2021
  • The study of the impact of weather on viral respiratory infections enables the assignment of causality to disease outbreaks caused by climatic factors. A better understanding of the seasonal distribution of viruses may facilitate the development of potential treatment approaches and effective preventive strategies for respiratory viral infections. We analyzed the incidence of human mastadenovirus infection using real-time reverse transcription polymerase chain reaction in 9,010 test samples obtained from Cheonan, South Korea, and simultaneously collected the weather data from January 1, 2012, to December 31, 2018. We used the data collected on the infection frequency to detect seasonal patterns of human mastadenovirus prevalence, which were directly compared with local weather data obtained over the same period. Descriptive statistical analysis, frequency analysis, t-test, and binomial logistic regression analysis were performed to examine the relationship between weather, particulate matter, and human mastadenovirus infections. Patients under 10 years of age showed the highest mastadenovirus infection rates (89.78%) at an average monthly temperature of 18.2℃. Moreover, we observed a negative correlation between human mastadenovirus infection and temperature, wind chill, and air pressure. The obtained results indicate that climatic factors affect the rate of human mastadenovirus infection. Therefore, it may be possible to predict the instance when preventive strategies would yield the most effective results.

기상요소에 따른 부산지역 계절별 교통사고 변화와 예측에 관한 연구 (On the Seasonal Prediction of Traffic Accidents in Relation to the Weather Elements in Pusan Area)

  • 이동인;이문철;유철환;이상구;이철기
    • 한국환경과학회지
    • /
    • 제9권6호
    • /
    • pp.469-474
    • /
    • 2000
  • The traffic accidents in large cities such as Pusan metropolitan city have been increased every year due to increasing of vehicles numbers as well as the gravitation of the population. In addition to the carelessness of drivers, many meteorological factors have a great influence on the traffic accidents. Especially, the number of traffic accidents is governed by precipitation, visibility, cloud amounts temperature, etc. In this study, we have analyzed various data of meteorological factors from 1992 to 1997 and determined the standardized values for contributing to each traffic accident. Using the relationship between meteorological factors(visibility, precipitation, relative humidity and cloud amounts) and the total automobile mishaps, and experimental prediction formula for their traffic accident rates was seasonally obtained at Pusan city in 1997. Therefore, these prediction formulas at each meteorological factor may by used to predict the seasonal traffic accident numbers and contributed to estimate the variation of its value according to the weather condition it Pusan city.

  • PDF

계절 및 날씨 정보를 이용한 인공신경망 기반 전력수요 예측 알고리즘 개발 (The Artificial Neural Network based Electric Power Demand Forecast using a Season and Weather Informations)

  • 김미경;홍철의
    • 전자공학회논문지
    • /
    • 제53권1호
    • /
    • pp.71-78
    • /
    • 2016
  • 본 논문은 인공 신경망에 기반을 둔 새로운 전력 수요 예측 모델을 제시한다. 인공 신경망 입력 변수로 시간과 날씨요소를 고려하였다. 시간 요소는 하절기와 동절기 전력수요 데이터의 자기 상관계수를 측정하여 선정하였고, 날씨요소는 피어슨 상관계수를 이용하여 선정하였다. 중요한 날씨요소로는 온도와 이슬점으로 이들은 전력수요와 밀접한 상관관계를 가지고 있다. 반면에 습도, 기압, 풍속 등과 같은 날씨요소는 전력수요와의 상관관계가 높지 않게 나타나 신경망의 입력 변수에서 제외하였다. 실험결과 새로이 제안한 인공 신경망을 이용한 전력수요 모델은 시간요소 및 날씨요소와 이에 대한 가중치를 피크 전력율과 계절에 따라 차등 적용하여 높은 적중률을 보였다.

Seasonal Weather Factors and Sensibility Change Relationship via Textmining

  • Yeo, Hyun-Jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.219-224
    • /
    • 2022
  • 한국 기상청은 '생활산업 기상정보서비스'나 '위기탈출 안전날씨'와 같은 일상에 관련된 정보를 제공하고 있다. 한편, 해외에서는 독일의 '신체기상정보', 영국의 '건강 기상정보'와 같이 인간의 신체와 감성에 영향을 미치는 기상정보 역시 제공하고 있다. 비록 인간의 감성 변화가 심리학 연구 영역에서 다양하고 방대하게 이루어져 왔지만, 빅 데이터 분석 기반에 근거한 기상정보에 따른 인간의 감성 예측모형은 요원한 상태이다. 이 연구에서는 기상요소에 따른 인간의 감성변화를 예측할 수 있는 모형을 기상청의 기상 데이터셋과 SNS상 크롤링된 일자별 텍스트를 통해 개발하고 검증하고자 한다. 연구 결과 기상 요소들로 인간의 감성변화를 예측할 수 있는 모형을 만들고 검증할 수 있었으며 이는 기존 연구와 그 결을 같이한다고 볼 수 있다.

조종사 양성 전문교육기관을 위한 시간대 및 계절별 기상분석 연구 : 무안국제공항을 중심으로 (Analysis of Weather Conditions from Hourly to Seasonal Scales for Pilot Aviation Training Organization(ATO): Case study for Muan International Airport)

  • 손병욱;김현미;김휘양
    • 한국항행학회논문지
    • /
    • 제26권5호
    • /
    • pp.249-260
    • /
    • 2022
  • 비행교육을 받는 학생 조종사들은 조종 및 상황판단 능력이 미숙하며 심리적, 육체적, 환경적 등 다양한 요소에 의해 많은 영향을 받는다. 특히 학생 조종사들의 비행교육에 가장 많은 영향을 미치는 요소 중 하나는 기상상태이다. 항공운송사업에 사용되는 대형 항공기와 달리 비행교육에 사용되는 소형 항공기는 기상조건에 따라 비행 제한, 악기상에서는 심리적 압박, 학생 기량 저하 등 교육에 많은 영향을 준다. 그러므로 본 연구에서는 소형 항공기에 많은 영향을 미치는 기상요소에 대한 기상 특성에 대해 분석을 하였다. 분석 결과 계절에 대한 교육 시기 조절, 항공기 가동률 증가, 기상을 고려한 안전한 단독비행 계획을 통하여 조종사 양성 전문교육기관에 효율적이고 안전한 교육훈련 운영방법을 제시하였다.

백화점 패션의류제품에 있어 기상요인이 매출에 미치는 영향에 대한 탐색적 연구 (An Exploratory Study on the Effect of Weather Factors on Sales of Fashion Apparel Products in Department Stores)

  • 장은영;임병훈
    • 마케팅과학연구
    • /
    • 제12권
    • /
    • pp.121-134
    • /
    • 2003
  • 기상마케팅은 기상 상태의 변화에 따른 소비자의 욕구와 구매행태의 변화를 기업의 마케팅계획에 반영하려는 노력으로 빙과류, 맥주나 음료 에어컨, 방한의류 등과 같은 계절적 상품들에서 일찍부터 중요성이 인식되어져 활용되어져 왔다. 그러나 기상요인의 영향력에 대한 연구는 기업의 사내 보고서 형태로 이루어져 왔으며 주요 기상요인들이 제품판매에 미치는 영향에 대한 학문적인 접근은 거의 이루어지지 않은 상태이다. 이에 본 연구에서는 국내 주요 백화점에서 판매되는 다앙한 패션의류제품올 대상으로 일별 매출데이터와 기상특성자료들간의 관계를 체계적으로 분석하였다. 특히 기상요인들이 매출에 미치는 영향이 어느 정도인지를 파악하기 위해 백화점의 주요 판매촉진 수단인 정기세일과 사은품 증정의 효과와 비교함으로서 기상요인의 영향력을 평가하였다. 분석결과 패션제품 매출에 있어 기상요인들은 정기세일보다는 낮지만 사은품증정과 유사한 수준의 효과를 갖고 있는 것으로 나타났으며, 기상요인들중 기온, 강수량, 바람이 매출에 유의한 영향을 미치는 것으로 나타났다. 그러나 기상요인의 구체적인 효과는 계절에 따라, 복종별로 상이하게 나타나 향후 의류제품 판매에 있어 기상마케팅의 적용은 시즌과 제품특성을 반영한 체계적인 예측모형의 구측과 적용이 필요한 것으로 나타났다.

  • PDF

Analyzing the Impact of Weather Conditions on Beer Sales: Insights for Market Strategy and Inventory Management

  • Sangwoo LEE;Sang Hyeon LEE
    • Asian Journal of Business Environment
    • /
    • 제14권3호
    • /
    • pp.1-11
    • /
    • 2024
  • Purpose: This study analyzes the impact of weather conditions, holidays, and sporting events on beer sales, providing insights for market strategy and inventory management in the beer industry. Research design, data and methodology: Beer types were classified into Lagers and Ales, with further subcategories. The study utilized weekly retail sales data from January 2018 to August 2020, provided by Nielsen Korea. An ARMAX model was employed for time-series analysis. Results: The analysis revealed that increasing temperatures positively influence sales of Pilsners and Pale Lagers. Conversely, higher precipitation levels negatively affect overall Lager sales. Among Ales, only Stout sales showed a significant decrease with increased rainfall. Sunshine duration did not significantly impact sales for any beer type. Humidity generally had little effect on beer sales, with the exception of Amber Lagers, which showed sensitivity to humidity changes. Holidays and sporting events were found to significantly boost sales across most beer types, although the specific impacts varied by beer category. Conclusions: This study offers a detailed analysis of how weather conditions and specific events influence different beer type sales. The findings provide valuable insights for breweries, beer processors, and retailers to optimize their market strategies and inventory management based on weather forecasts and seasonal events. By understanding the consumption patterns of each beer type in relation to environmental factors, businesses can better anticipate demand fluctuations and tailor their operations accordingly.

집중호우로 인한 철도재해 유형 분석($2002{\sim}2007$년도) (Analysis on disasters pattern of the railroad caused by heavy rainfall ($2002{\sim}2007$))

  • 최찬용;이진욱;신민호;이석영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.88-92
    • /
    • 2008
  • For more and more citizen safety and national security due to an unusual weather change and massive disaster, the atmospheric is one of the most major factors. According the Weather Service data that the rainfall intensity has been on the rise due to heavy rainfall in korea, and then daily precipitation expects to decline relative it. The characteristic climate of the domestic has a heavy rainfall due to 65% of mountain area in country and a regional declination as like seasonal effect, yearly. etc. In this paper, it was analyzed a disaster pattern and restoration cost based on occurred heavy rainfall from 2002 to 2007.

  • PDF

멤버십 함수와 DNN을 이용한 PM10 예보 성능의 향상 (Improvement of PM10 Forecasting Performance using Membership Function and DNN)

  • 유숙현;전영태;권희용
    • 한국멀티미디어학회논문지
    • /
    • 제22권9호
    • /
    • pp.1069-1079
    • /
    • 2019
  • In this study, we developed a $PM_{10}$ forecasting model using DNN and Membership Function, and improved the forecasting performance. The model predicts the $PM_{10}$ concentrations of the next 3 days in the Seoul area by using the weather and air quality observation data and forecast data. The best model(RM14)'s accuracy (82%, 76%, 69%) and false alarm rate(FAR:14%,33%,44%) are good. Probability of detection (POD: 79%, 50%, 53%), however, are not good performance. These are due to the lack of training data for high concentration $PM_{10}$ compared to low concentration. In addition, the model dose not reflect seasonal factors closely related to the generation of high concentration $PM_{10}$. To improve this, we propose Julian date membership function as inputs of the $PM_{10}$ forecasting model. The function express a given date in 12 factors to reflect seasonal characteristics closely related to high concentration $PM_{10}$. As a result, the accuracy (79%, 70%, 66%) and FAR (24%, 48%, 46%) are slightly reduced in performance, but the POD (79%, 75%, 71%) are up to 25% improved compared with those of the RM14 model. Hence, this shows that the proposed Julian forecast model is effective for high concentration $PM_{10}$ forecasts.