• Title/Summary/Keyword: Weather Buoy

Search Result 56, Processing Time 0.022 seconds

A design of Hybrid power generation system for Ocean facilities (해양시설물용 하이브리드 발전시스템 설계)

  • Jung, Sung-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.381-385
    • /
    • 2009
  • Generally power system of ocean facility composes a solar generation system.The power to be generated by the solar system is changed according to the amount of sunlight of weather conditions. Output power of solar system is decreased with weather condition such as cloudy day and rainy day. And the power shortage of the ocean facility can occur due to the lack of solar energy. To solve this problem, this paper proposes the power control system for solar-wave hybrid system Wave generation system consists of wells turbine and permanent magnet synchronous generator(PMSG). This propose system set the specific area and measures the solar generation power and wave generation power. As a result of experiment, the solar power is a more static source than wave power, but the wave power provides energy during periods of no sunshine. The power characteristic of propose hybrid system have been obtained high reliability than a solar generation system.

Impact of High-Resolution Sea Surface Temperatures on the Simulated Wind Resources in the Southeastern Coast of the Korean Peninsula (고해상도 해수면온도자료가 한반도 남동해안 풍력자원 수치모의에 미치는 영향)

  • Lee, Hwa-Woon;Cha, Yeong-Min;Lee, Soon-Hwan;Kim, Dong-Hyeok
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.171-184
    • /
    • 2010
  • Accurate simulation of the meteorological field is very important to assess the wind resources. Some researchers showed that sea surface temperature (SST) plays a leading role on the local meterological simulation. New Generation Sea Surface Temperature (NGSST), Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA), and Real-Time Global Sea Surface Temperature (RTG SST) have different spatial distribution near the coast and OSTIA shows the best accuracy compared with buoy data in the southeastern coast of the Korean Peninsula. Those SST products are used to initialize the Weather Research and Forecasting (WRF) Model for November 13-23 2008. The simulation of OSTIA shows better result in comparison with NGSST and RTG SST. NGSST shows a large difference with OSTIA in horizontal and vertical wind fields during the weak synoptic condition, but wind power density shows a large difference during strong synoptic condition. RTG SST shows the similar patterns but smaller the magnitude and the extent.

Design of Marine Transport Facilitie's Anti-Fouling System of Wave Power Generation (해양교통시설물의 파력발전 방오장치 설계)

  • Kim, Ji-Yoon;Jo, Kwan-Jun;Han, Sung-Hun;Oh, Jin-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.192-192
    • /
    • 2011
  • For the safety of vessels sailing Marine Transport Facility announces sea route, reefs or shallow water. Photovoltaic, independent power system, installation in the general Marine Transport Facilities to be used in the marine lantern. Due to install of communications, controls, power consumption inceases. And the weather of cloudy day or rainy, generation of electricity is decrease. Recently, power system of marine facility using a hybrid generation system, photovoltaic generation system and wave power generation system. But increase of adhered shellfish inside the water column, is the cause of the reduction of efficiency. So study was conducted to Single channel AFS(Anti-Fouling system). In this paper we offer the Multi channel AFS for Marine Transport Facility and have simulated. Improve the accuracy of the research, we using the result of anode, in the experiment were actually in the buoy, is based on simulation. The experimental results is shown every anode's, in the Marine Transport Facility, ionization was conducted identically.

  • PDF

A Study on the Re-establishment of the Accident Classification for Aids to Navigation (항로표지사고 분류체계의 재정립에 관한 연구)

  • Beom-Sik Moon;Tae-Goun Kim;Chae-uk Song;Young-Jin Kim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.128-133
    • /
    • 2023
  • In order for Aids to Navigation to provide sustainable services to users, it is possible when there is no Aids to Navigation accident. If an Aids to Navigation accident occurs, the manager should efficiently manage it to prevent the same accident. However, the current Aids to Navigation accident management only specifies the cause and type of the accident. There are no separate guidelines. Thus, the accident is recorded differently depending on the manager. Therefore, this study attempted to redefine Aids to Navigation accident. To this end, Aids to Navigation accidents that have occurred over the past 23 years (year 2000 to years 2022), IALA's Aids to Navigation information standard, S-201, and categories of accidents (traffic accidents and marine accidents) were analyzed. Causes of Aids to Navigation accidents were divided into internal and external causes. Accidents were divided into three types: Light tower accident, buoy accident, and equipment accident. By further subdividing primary items, the cause of accident was reestablished into 7 items such as mooring and bad weather and 11 items such as Light tower damage, buoy loss, and equipment breakdown. These research results can be used as basic data to provide future Aids to Navigation accident statistics.

Effect of Sea Surface Temperature Gradient Induced by the Previous Typhoon's Cold Wake on the Track of the Following Typhoon: Bolaven (1215) and Tembin (1214) (선행 태풍의 해수 냉각에 의한 해수면 온도 경도가 후행 태풍의 진로에 미치는 영향: 볼라벤(1215)과 덴빈(1214))

  • Moon, Mincheol;Choi, Yumi;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.635-647
    • /
    • 2016
  • The effects of sea surface temperature (SST) gradient induced by the previous typhoon on the following typhoon motion over East Asia have been investigated using Weather Research and Forecasting (WRF) model for the previous Typhoon Bolaven (1215) and following Typhoon Tembin (1214). It was observed that Typhoon Bolaven remarkably reduced SST by about $7^{\circ}C$ at Yellow Sea buoy (YSbuoy). Using the WRF experiments for the imposed cold wake over West of Tembin (WT) and over East of Tembin (ET), this study demonstrates that the effects of eastward SST gradient including cold wake over WT is much significant rather than that over ET in relation to unexpected Tembin's eastward deflection. This difference between two experiments is attributed to the fact that cold wake over WT increases the magnitude of SST gradient under the eastward SST gradient around East Asia and the resultant asymmetric flow deflects Typhoon Tembin eastward, which is mainly due to the different atmospheric response to the SST forcing between ET and WT. Therefore, it implies that the enhanced eastward SST gradient over East Asia results in larger typhoon deflection toward the region of warmer SST according to the location of the cold wake effect. This result can contribute to the improvement of track prediction for typhoons influencing the Korean Peninsula

Seasonal Characteristics of Sea Surface Winds and Significant Wave Heights Observed Marine Meterological Buoys and Lighthouse AWSs near the Korean Peninsula (한반도 주변해역의 기상부이와 등표에서 관측된 계절별 해상풍과 유의파고 특성)

  • Kang, Yoon-Hee;Seuk, Hyun-Bae;Bang, Jin-Hee;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.291-302
    • /
    • 2015
  • The seasonal variations of sea surface winds and significant wave heights were investigated using the data observed from the marine meteorological buoys (nine stations) and Automatic Weather Stations (AWSs) in lighthouse (nine stations) around the Korean Peninsula during 2010~2012. In summer, the prevailing sea surface winds over the East/West Sea and the South Sea were northerly/southerly and easterly/westerly winds due to both of southeast monsoon and the shape of Korean Peninsula. On the other hand, the strong northerly winds has been observed at most stations near Korean marginal seas under northwest monsoon in winter. However, the sea surface winds at some stations (e.g. Galmaeyeo, Haesuseo in the West Sea) have different characteristics due to topographic effects such as island or coastal line. The significant wave heights are the highest in winter and the lowest in summer at most stations. In case of some lighthouse AWSs surrounded by islands (e.g. Haesuseo, Seosudo) or close to coast (e.g. Gangan, Jigwido), very low significant wave heights (below 0.5 m) with low correlations between sea surface wind speeds and significant wave heights were observed.

Objective Classification of Fog Type and Analysis of Fog Characteristics Using Visibility Meter and Satellite Observation Data over South Korea (시정계와 위성 관측 자료를 활용한 남한 안개의 객관적인 유형 분류와 특성 분석)

  • Lee, Hyun-Kyoung;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.639-658
    • /
    • 2019
  • The classification of fog type and the characteristics of fog based on fog events over South Korea were investigated using a 3-year (2015~2017) visibility meter data. One-minute visibility meter data were used to identify fog with present weather codes and surface observation data. The concept of fog events was adopted for the better definition of fog properties and more objective classification through the detailed investigation of life cycle of fog. Decision tree method was used to classify the fog types and the final fog types were radiation fog, advection fog, precipitation fog, cloud base lowering fog and morning evaporation fog. We enhanced objectivity in classifying the types of fog by adding the satellite and the buoy observations to the conventional usage of AWS and ceilometer data. Radiation fog, the most common type in South Korea, frequently occurs in inland during autumn. A considerable number of advection fogs occur in island area in summer, especially in July. Precipitation fog accounts for more than a quarter of the total fog events and frequently occurs in islands and coastal areas. Cloud base lowering fog, classified using ceilometer, occurs occasionally for all areas but the occurrence rate is relatively high in east and west coastal area. Morning evaporation fog type is rarely observed in inland. The occurrence rate of thick fog with visibility less than 100 meters is amount to 21% of total fog events. Although advection fog develops into thick fog frequently, radiation fog shows the minimum visibility, in some cases.

The Application of Wind Profiler Data and Its Effects on Wind Distributions in Two Different Coastal Areas (연안지역 지형적 특성에 따른 윈드프로파일러 자료의 자료동화 효과 분석)

  • Jeong, Ju-Hee;Lo, So-Young;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.689-701
    • /
    • 2010
  • The effects of high-resolution wind profiler (HWP) data on the wind distributions were evaluated in two different coastal areas during the study period (23-26 August, 2007), indicating weak-gradient flows. The analysis was performed using the Weather Research and Forecasting (WRF) model coupled with a three-dimensional variational (3DVAR) data assimilation system. For the comparison purpose, two coastal regions were selected as: a southwestern coastal (SWC) region characterized by a complex shoreline and a eastern coastal (EC) region surrounding a simple coastline and high mountains. The influence of data assimilation using the HWP data on the wind distributions in the SWC region was moderately higher than that of the EC region. In comparison between the wind speed and direction in the two coastal areas, the application of the HWP data contributed to improvement of the wind direction distribution in the SWC region and the wind strength in the EC region, respectively. This study suggests that the application of the HWP data exerts a large impact on the change in wind distributions over the sea and thus can contribute to the solution to lack of satellite and buoy data with their observational uncertainty.

Quality Enhancement of Wave Data Observed by Radar at the Socheongcho Ocean Research Station (소청초 종합해양과학기지 Radar 파랑 관측 데이터의 신뢰도 향상)

  • Min, Yongchim;Jeong, JinYong;Shim, Jae-Seol;Do, Kideok
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.4
    • /
    • pp.189-196
    • /
    • 2017
  • Ocean Research Stations (ORSs) is the ocean platform type observation towers and measured oceanic, atmospheric and environmental data. These station located on the offshore area far from the coast, so they can produce the data without land effect. This study focused to improve the wave data quality of ORS station. The wave observations at ORSs are used by the C-band (5.8 GHz, 5.17 cm) MIROS Wave and Current Radar (MWR). MWR is convenient to maintenance and produce reliability wave data under bad weather conditions. MWR measured significant wave height, peak wave period, peak wave direction and 2D wave spectrum, so it's can provide wave information for researchers and engineers. In order to improve the reliability of MWR wave data, Datawell Waverider Buoy was installed near the one ORS (Socheoncho station) during 7 months and validate the wave data of MWR. This study found that the wave radar tend to be overestimate the low wave height under wind condition. Firstly, this study carried out the wave Quality Control (QC) using wind data, however the quality of wave data was limited. So, this study applied the four filters (Correlation Check, Direction Filter, Reduce White Noise and Phillips Check) of MWR operating software and find that the filters effectively improve the wave data quality. After applying 3 effective filters in combination, the RMSE of significant wave height decreased from 0.81m to 0.23m, by 0.58m and Correlation increased from 0.66 to 0.96, by 0.32, so the reliability of MWR significant wave height was significantly improved.

Characteristics of Strong Winds Caused by Typhoons on the Korean Peninsula Using Long-term Meteorological Data (근대기상관측 이후 장기기상자료를 이용한 한반도 영향태풍의 강풍특성)

  • Lee, Eunji;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.30 no.9
    • /
    • pp.753-762
    • /
    • 2021
  • This study analyzed the characteristics of strong winds accompanying typhoons for a period of 116 years, from 1904 to 2019, when modern weather observations began in Korea. Analysis shows that the average wind speed and high wind rate caused by typhoons were higher over the sea and in the coastal areas than in the inland areas. The average wind speed was higher over the West Sea than over the South Sea, but the rate of strong wind was greater over the South Sea than over the West Sea. The average wind speed decreased by 1980 and recently increased, while the rate of strong winds decreased by 1985 and has subsequently increased. By season, the strong winds in autumn (september and october) were stronger than those in summer (june, july, and august). Strong winds were also more frequent in autumn than in summer. The analysis of the changes in strong winds caused by typhoons since the 1960s shows that the speed of strong winds in august, september, and october has increased more recently than in the past four cycles. In particular, the increase in wind speed was evident in fall (september and october). Analysis of the results suggests that the stronger wind is due to the effects of autumn typhoons, and the increased possibility of strong winds.